Metamath Proof Explorer


Theorem axlowdimlem5

Description: Lemma for axlowdim . Show that a particular union is a point in Euclidean space. (Contributed by Scott Fenton, 29-Jun-2013)

Ref Expression
Hypotheses axlowdimlem4.1 A
axlowdimlem4.2 B
Assertion axlowdimlem5 N21A2B3N×0𝔼N

Proof

Step Hyp Ref Expression
1 axlowdimlem4.1 A
2 axlowdimlem4.2 B
3 1 2 axlowdimlem4 1A2B:12
4 axlowdimlem1 3N×0:3N
5 3 4 pm3.2i 1A2B:123N×0:3N
6 axlowdimlem2 123N=
7 fun2 1A2B:123N×0:3N123N=1A2B3N×0:123N
8 5 6 7 mp2an 1A2B3N×0:123N
9 axlowdimlem3 N21N=123N
10 9 feq2d N21A2B3N×0:1N1A2B3N×0:123N
11 8 10 mpbiri N21A2B3N×0:1N
12 eluz2nn N2N
13 elee N1A2B3N×0𝔼N1A2B3N×0:1N
14 12 13 syl N21A2B3N×0𝔼N1A2B3N×0:1N
15 11 14 mpbird N21A2B3N×0𝔼N