Metamath Proof Explorer


Theorem axpre-mulgt0

Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version for extended reals is axmulgt0 . This construction-dependent theorem should not be referenced directly; instead, use ax-pre-mulgt0 . (Contributed by NM, 13-May-1996) (New usage is discouraged.)

Ref Expression
Assertion axpre-mulgt0 AB0<A0<B0<AB

Proof

Step Hyp Ref Expression
1 elreal Ax𝑹x0𝑹=A
2 elreal By𝑹y0𝑹=B
3 breq2 x0𝑹=A0<x0𝑹0<A
4 3 anbi1d x0𝑹=A0<x0𝑹0<y0𝑹0<A0<y0𝑹
5 oveq1 x0𝑹=Ax0𝑹y0𝑹=Ay0𝑹
6 5 breq2d x0𝑹=A0<x0𝑹y0𝑹0<Ay0𝑹
7 4 6 imbi12d x0𝑹=A0<x0𝑹0<y0𝑹0<x0𝑹y0𝑹0<A0<y0𝑹0<Ay0𝑹
8 breq2 y0𝑹=B0<y0𝑹0<B
9 8 anbi2d y0𝑹=B0<A0<y0𝑹0<A0<B
10 oveq2 y0𝑹=BAy0𝑹=AB
11 10 breq2d y0𝑹=B0<Ay0𝑹0<AB
12 9 11 imbi12d y0𝑹=B0<A0<y0𝑹0<Ay0𝑹0<A0<B0<AB
13 df-0 0=0𝑹0𝑹
14 13 breq1i 0<x0𝑹0𝑹0𝑹<x0𝑹
15 ltresr 0𝑹0𝑹<x0𝑹0𝑹<𝑹x
16 14 15 bitri 0<x0𝑹0𝑹<𝑹x
17 13 breq1i 0<y0𝑹0𝑹0𝑹<y0𝑹
18 ltresr 0𝑹0𝑹<y0𝑹0𝑹<𝑹y
19 17 18 bitri 0<y0𝑹0𝑹<𝑹y
20 mulgt0sr 0𝑹<𝑹x0𝑹<𝑹y0𝑹<𝑹x𝑹y
21 16 19 20 syl2anb 0<x0𝑹0<y0𝑹0𝑹<𝑹x𝑹y
22 13 a1i x𝑹y𝑹0=0𝑹0𝑹
23 mulresr x𝑹y𝑹x0𝑹y0𝑹=x𝑹y0𝑹
24 22 23 breq12d x𝑹y𝑹0<x0𝑹y0𝑹0𝑹0𝑹<x𝑹y0𝑹
25 ltresr 0𝑹0𝑹<x𝑹y0𝑹0𝑹<𝑹x𝑹y
26 24 25 bitrdi x𝑹y𝑹0<x0𝑹y0𝑹0𝑹<𝑹x𝑹y
27 21 26 imbitrrid x𝑹y𝑹0<x0𝑹0<y0𝑹0<x0𝑹y0𝑹
28 1 2 7 12 27 2gencl AB0<A0<B0<AB