Metamath Proof Explorer


Theorem ballotlemiex

Description: Properties of ( IC ) . (Contributed by Thierry Arnoux, 12-Dec-2016) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O = c 𝒫 1 M + N | c = M
ballotth.p P = x 𝒫 O x O
ballotth.f F = c O i 1 i c 1 i c
ballotth.e E = c O | i 1 M + N 0 < F c i
ballotth.mgtn N < M
ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
Assertion ballotlemiex C O E I C 1 M + N F C I C = 0

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O = c 𝒫 1 M + N | c = M
4 ballotth.p P = x 𝒫 O x O
5 ballotth.f F = c O i 1 i c 1 i c
6 ballotth.e E = c O | i 1 M + N 0 < F c i
7 ballotth.mgtn N < M
8 ballotth.i I = c O E sup k 1 M + N | F c k = 0 <
9 1 2 3 4 5 6 7 8 ballotlemi C O E I C = sup k 1 M + N | F C k = 0 <
10 ltso < Or
11 10 a1i C O E < Or
12 fzfi 1 M + N Fin
13 ssrab2 k 1 M + N | F C k = 0 1 M + N
14 ssfi 1 M + N Fin k 1 M + N | F C k = 0 1 M + N k 1 M + N | F C k = 0 Fin
15 12 13 14 mp2an k 1 M + N | F C k = 0 Fin
16 15 a1i C O E k 1 M + N | F C k = 0 Fin
17 1 2 3 4 5 6 7 ballotlem5 C O E k 1 M + N F C k = 0
18 rabn0 k 1 M + N | F C k = 0 k 1 M + N F C k = 0
19 17 18 sylibr C O E k 1 M + N | F C k = 0
20 fzssuz 1 M + N 1
21 uzssz 1
22 20 21 sstri 1 M + N
23 zssre
24 22 23 sstri 1 M + N
25 13 24 sstri k 1 M + N | F C k = 0
26 25 a1i C O E k 1 M + N | F C k = 0
27 fiinfcl < Or k 1 M + N | F C k = 0 Fin k 1 M + N | F C k = 0 k 1 M + N | F C k = 0 sup k 1 M + N | F C k = 0 < k 1 M + N | F C k = 0
28 11 16 19 26 27 syl13anc C O E sup k 1 M + N | F C k = 0 < k 1 M + N | F C k = 0
29 9 28 eqeltrd C O E I C k 1 M + N | F C k = 0
30 fveqeq2 k = I C F C k = 0 F C I C = 0
31 30 elrab I C k 1 M + N | F C k = 0 I C 1 M + N F C I C = 0
32 29 31 sylib C O E I C 1 M + N F C I C = 0