Metamath Proof Explorer


Theorem bayesth

Description: Bayes Theorem. (Contributed by Thierry Arnoux, 20-Dec-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion bayesth PProbAdomPBdomPPA0PB0cProbPAB=cProbPBAPAPB

Proof

Step Hyp Ref Expression
1 unitsscn 01
2 cndprob01 PProbAdomPBdomPPB0cProbPAB01
3 2 3adant2 PProbAdomPBdomPPA0PB0cProbPAB01
4 1 3 sselid PProbAdomPBdomPPA0PB0cProbPAB
5 simp11 PProbAdomPBdomPPA0PB0PProb
6 simp13 PProbAdomPBdomPPA0PB0BdomP
7 prob01 PProbBdomPPB01
8 5 6 7 syl2anc PProbAdomPBdomPPA0PB0PB01
9 1 8 sselid PProbAdomPBdomPPA0PB0PB
10 simp3 PProbAdomPBdomPPA0PB0PB0
11 4 9 10 divcan4d PProbAdomPBdomPPA0PB0cProbPABPBPB=cProbPAB
12 incom AB=BA
13 12 fveq2i PAB=PBA
14 cndprobin PProbAdomPBdomPPB0cProbPABPB=PAB
15 14 3adant2 PProbAdomPBdomPPA0PB0cProbPABPB=PAB
16 simp12 PProbAdomPBdomPPA0PB0AdomP
17 simp2 PProbAdomPBdomPPA0PB0PA0
18 cndprobin PProbBdomPAdomPPA0cProbPBAPA=PBA
19 5 6 16 17 18 syl31anc PProbAdomPBdomPPA0PB0cProbPBAPA=PBA
20 13 15 19 3eqtr4a PProbAdomPBdomPPA0PB0cProbPABPB=cProbPBAPA
21 20 oveq1d PProbAdomPBdomPPA0PB0cProbPABPBPB=cProbPBAPAPB
22 11 21 eqtr3d PProbAdomPBdomPPA0PB0cProbPAB=cProbPBAPAPB