Metamath Proof Explorer


Theorem bitsfi

Description: Every number is associated with a finite set of bits. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsfi N0bitsNFin

Proof

Step Hyp Ref Expression
1 nn0re N0N
2 2re 2
3 2 a1i N02
4 1lt2 1<2
5 4 a1i N01<2
6 expnbnd N21<2mN<2m
7 1 3 5 6 syl3anc N0mN<2m
8 fzofi 0..^mFin
9 simpl N0mN<2mN0
10 nn0uz 0=0
11 9 10 eleqtrdi N0mN<2mN0
12 2nn 2
13 12 a1i N0mN<2m2
14 simprl N0mN<2mm
15 14 nnnn0d N0mN<2mm0
16 13 15 nnexpcld N0mN<2m2m
17 16 nnzd N0mN<2m2m
18 simprr N0mN<2mN<2m
19 elfzo2 N0..^2mN02mN<2m
20 11 17 18 19 syl3anbrc N0mN<2mN0..^2m
21 9 nn0zd N0mN<2mN
22 bitsfzo Nm0N0..^2mbitsN0..^m
23 21 15 22 syl2anc N0mN<2mN0..^2mbitsN0..^m
24 20 23 mpbid N0mN<2mbitsN0..^m
25 ssfi 0..^mFinbitsN0..^mbitsNFin
26 8 24 25 sylancr N0mN<2mbitsNFin
27 7 26 rexlimddv N0bitsNFin