Metamath Proof Explorer


Theorem bj-imdirvallem

Description: Lemma for bj-imdirval and bj-iminvval . (Contributed by BJ, 23-May-2024)

Ref Expression
Hypotheses bj-imdirvallem.1 φAU
bj-imdirvallem.2 φBV
bj-imdirvallem.df C=aV,bVr𝒫a×bxy|xaybψ
Assertion bj-imdirvallem φACB=r𝒫A×Bxy|xAyBψ

Proof

Step Hyp Ref Expression
1 bj-imdirvallem.1 φAU
2 bj-imdirvallem.2 φBV
3 bj-imdirvallem.df C=aV,bVr𝒫a×bxy|xaybψ
4 3 a1i φC=aV,bVr𝒫a×bxy|xaybψ
5 xpeq12 a=Ab=Ba×b=A×B
6 5 pweqd a=Ab=B𝒫a×b=𝒫A×B
7 6 adantl φa=Ab=B𝒫a×b=𝒫A×B
8 sseq2 a=AxaxA
9 sseq2 b=BybyB
10 8 9 bi2anan9 a=Ab=BxaybxAyB
11 10 anbi1d a=Ab=BxaybψxAyBψ
12 11 opabbidv a=Ab=Bxy|xaybψ=xy|xAyBψ
13 12 adantl φa=Ab=Bxy|xaybψ=xy|xAyBψ
14 7 13 mpteq12dv φa=Ab=Br𝒫a×bxy|xaybψ=r𝒫A×Bxy|xAyBψ
15 1 elexd φAV
16 2 elexd φBV
17 1 2 xpexd φA×BV
18 17 pwexd φ𝒫A×BV
19 18 mptexd φr𝒫A×Bxy|xAyBψV
20 4 14 15 16 19 ovmpod φACB=r𝒫A×Bxy|xAyBψ