Metamath Proof Explorer


Theorem bj-imdirvallem

Description: Lemma for bj-imdirval and bj-iminvval . (Contributed by BJ, 23-May-2024)

Ref Expression
Hypotheses bj-imdirvallem.1 φ A U
bj-imdirvallem.2 φ B V
bj-imdirvallem.df C = a V , b V r 𝒫 a × b x y | x a y b ψ
Assertion bj-imdirvallem φ A C B = r 𝒫 A × B x y | x A y B ψ

Proof

Step Hyp Ref Expression
1 bj-imdirvallem.1 φ A U
2 bj-imdirvallem.2 φ B V
3 bj-imdirvallem.df C = a V , b V r 𝒫 a × b x y | x a y b ψ
4 3 a1i φ C = a V , b V r 𝒫 a × b x y | x a y b ψ
5 xpeq12 a = A b = B a × b = A × B
6 5 pweqd a = A b = B 𝒫 a × b = 𝒫 A × B
7 6 adantl φ a = A b = B 𝒫 a × b = 𝒫 A × B
8 sseq2 a = A x a x A
9 sseq2 b = B y b y B
10 8 9 bi2anan9 a = A b = B x a y b x A y B
11 10 anbi1d a = A b = B x a y b ψ x A y B ψ
12 11 opabbidv a = A b = B x y | x a y b ψ = x y | x A y B ψ
13 12 adantl φ a = A b = B x y | x a y b ψ = x y | x A y B ψ
14 7 13 mpteq12dv φ a = A b = B r 𝒫 a × b x y | x a y b ψ = r 𝒫 A × B x y | x A y B ψ
15 1 elexd φ A V
16 2 elexd φ B V
17 1 2 xpexd φ A × B V
18 17 pwexd φ 𝒫 A × B V
19 18 mptexd φ r 𝒫 A × B x y | x A y B ψ V
20 4 14 15 16 19 ovmpod φ A C B = r 𝒫 A × B x y | x A y B ψ