Metamath Proof Explorer


Theorem bj-projval

Description: Value of the class projection. (Contributed by BJ, 6-Apr-2019)

Ref Expression
Assertion bj-projval AVAProjB×tagC=ifB=AC

Proof

Step Hyp Ref Expression
1 elsng AVABA=B
2 bj-xpima2sn ABB×tagCA=tagC
3 1 2 syl6bir AVA=BB×tagCA=tagC
4 3 imp AVA=BB×tagCA=tagC
5 4 eleq2d AVA=BxB×tagCAxtagC
6 5 abbidv AVA=Bx|xB×tagCA=x|xtagC
7 df-bj-proj AProjB×tagC=x|xB×tagCA
8 bj-taginv C=x|xtagC
9 6 7 8 3eqtr4g AVA=BAProjB×tagC=C
10 9 ex AVA=BAProjB×tagC=C
11 noel ¬x
12 7 eqabri xAProjB×tagCxB×tagCA
13 elsni ABA=B
14 bj-xpima1sn ¬ABB×tagCA=
15 13 14 nsyl5 ¬A=BB×tagCA=
16 15 eleq2d ¬A=BxB×tagCAx
17 12 16 bitrid ¬A=BxAProjB×tagCx
18 11 17 mtbiri ¬A=B¬xAProjB×tagC
19 18 eq0rdv ¬A=BAProjB×tagC=
20 ifval AProjB×tagC=ifA=BCA=BAProjB×tagC=C¬A=BAProjB×tagC=
21 10 19 20 sylanblrc AVAProjB×tagC=ifA=BC
22 eqcom A=BB=A
23 ifbi A=BB=AifA=BC=ifB=AC
24 22 23 ax-mp ifA=BC=ifB=AC
25 21 24 eqtrdi AVAProjB×tagC=ifB=AC