Metamath Proof Explorer


Theorem blennn0e2

Description: The binary length of an even positive integer is the binary length of the half of the integer, increased by 1. (Contributed by AV, 29-May-2020)

Ref Expression
Assertion blennn0e2 NN20#b N = #b N2+1

Proof

Step Hyp Ref Expression
1 2rp 2+
2 1ne2 12
3 2 necomi 21
4 eldifsn 2+12+21
5 1 3 4 mpbir2an 2+1
6 nnrp NN+
7 6 adantr NN20N+
8 relogbdivb 2+1N+log2N2=log2N1
9 5 7 8 sylancr NN20log2N2=log2N1
10 9 fveq2d NN20log2N2=log2N1
11 10 oveq1d NN20log2N2+1=log2N1+1
12 1 a1i N2+
13 3 a1i N21
14 relogbcl 2+N+21log2N
15 12 6 13 14 syl3anc Nlog2N
16 1zzd N1
17 15 16 jca Nlog2N1
18 17 adantr NN20log2N1
19 flsubz log2N1log2N1=log2N1
20 18 19 syl NN20log2N1=log2N1
21 20 oveq1d NN20log2N1+1=log2N-1+1
22 15 flcld Nlog2N
23 22 zcnd Nlog2N
24 npcan1 log2Nlog2N-1+1=log2N
25 23 24 syl Nlog2N-1+1=log2N
26 25 adantr NN20log2N-1+1=log2N
27 11 21 26 3eqtrd NN20log2N2+1=log2N
28 27 oveq1d NN20log2N2+1+1=log2N+1
29 nn0enne NN20N2
30 29 biimpa NN20N2
31 blennn N2#b N2 = log2N2+1
32 31 oveq1d N2#b N2 + 1 = log2N2+1+1
33 30 32 syl NN20#b N2 + 1 = log2N2+1+1
34 blennn N#b N = log2N+1
35 34 adantr NN20#b N = log2N+1
36 28 33 35 3eqtr4rd NN20#b N = #b N2+1