Metamath Proof Explorer


Theorem blin2

Description: Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion blin2 D∞MetXPBCBranballDCranballDx+PballDxBC

Proof

Step Hyp Ref Expression
1 simpll D∞MetXPBCBranballDCranballDD∞MetX
2 simprl D∞MetXPBCBranballDCranballDBranballD
3 simplr D∞MetXPBCBranballDCranballDPBC
4 3 elin1d D∞MetXPBCBranballDCranballDPB
5 blss D∞MetXBranballDPBy+PballDyB
6 1 2 4 5 syl3anc D∞MetXPBCBranballDCranballDy+PballDyB
7 simprr D∞MetXPBCBranballDCranballDCranballD
8 3 elin2d D∞MetXPBCBranballDCranballDPC
9 blss D∞MetXCranballDPCz+PballDzC
10 1 7 8 9 syl3anc D∞MetXPBCBranballDCranballDz+PballDzC
11 reeanv y+z+PballDyBPballDzCy+PballDyBz+PballDzC
12 ss2in PballDyBPballDzCPballDyPballDzBC
13 inss1 BCB
14 blf D∞MetXballD:X×*𝒫X
15 frn ballD:X×*𝒫XranballD𝒫X
16 1 14 15 3syl D∞MetXPBCBranballDCranballDranballD𝒫X
17 16 2 sseldd D∞MetXPBCBranballDCranballDB𝒫X
18 17 elpwid D∞MetXPBCBranballDCranballDBX
19 13 18 sstrid D∞MetXPBCBranballDCranballDBCX
20 19 3 sseldd D∞MetXPBCBranballDCranballDPX
21 1 20 jca D∞MetXPBCBranballDCranballDD∞MetXPX
22 rpxr y+y*
23 rpxr z+z*
24 22 23 anim12i y+z+y*z*
25 blin D∞MetXPXy*z*PballDyPballDz=PballDifyzyz
26 21 24 25 syl2an D∞MetXPBCBranballDCranballDy+z+PballDyPballDz=PballDifyzyz
27 26 sseq1d D∞MetXPBCBranballDCranballDy+z+PballDyPballDzBCPballDifyzyzBC
28 ifcl y+z+ifyzyz+
29 oveq2 x=ifyzyzPballDx=PballDifyzyz
30 29 sseq1d x=ifyzyzPballDxBCPballDifyzyzBC
31 30 rspcev ifyzyz+PballDifyzyzBCx+PballDxBC
32 31 ex ifyzyz+PballDifyzyzBCx+PballDxBC
33 28 32 syl y+z+PballDifyzyzBCx+PballDxBC
34 33 adantl D∞MetXPBCBranballDCranballDy+z+PballDifyzyzBCx+PballDxBC
35 27 34 sylbid D∞MetXPBCBranballDCranballDy+z+PballDyPballDzBCx+PballDxBC
36 12 35 syl5 D∞MetXPBCBranballDCranballDy+z+PballDyBPballDzCx+PballDxBC
37 36 rexlimdvva D∞MetXPBCBranballDCranballDy+z+PballDyBPballDzCx+PballDxBC
38 11 37 biimtrrid D∞MetXPBCBranballDCranballDy+PballDyBz+PballDzCx+PballDxBC
39 6 10 38 mp2and D∞MetXPBCBranballDCranballDx+PballDxBC