Metamath Proof Explorer


Theorem bnj1190

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1190.1 φRFrSeABAB
bnj1190.2 ψxByByRx
Assertion bnj1190 φψwBzB¬zRw

Proof

Step Hyp Ref Expression
1 bnj1190.1 φRFrSeABAB
2 bnj1190.2 ψxByByRx
3 1 simp2bi φBA
4 3 adantr φψBA
5 eqid trClxARB=trClxARB
6 1 simp1bi φRFrSeA
7 6 adantr φψRFrSeA
8 2 simp1bi ψxB
9 ssel2 BAxBxA
10 3 8 9 syl2an φψxA
11 2 5 7 4 10 bnj1177 φψRFrAtrClxARBAtrClxARBtrClxARBV
12 bnj1154 RFrAtrClxARBAtrClxARBtrClxARBVutrClxARBvtrClxARB¬vRu
13 11 12 bnj1176 uvφψutrClxARBRFrSeAxAutrClxARRFrSeAuAvAvRu¬vtrClxARB
14 biid RFrSeAxAutrClxARRFrSeAuAvAvRuRFrSeAxAutrClxARRFrSeAuAvAvRu
15 biid RFrSeAxAutrClxARRFrSeAuAvARFrSeAxAutrClxARRFrSeAuAvA
16 5 14 15 bnj1175 RFrSeAxAutrClxARRFrSeAuAvAvRuvtrClxAR
17 5 13 16 bnj1174 uvφψφψutrClxARBRFrSeAxAutrClxARRFrSeAuAvAvRu¬vB
18 5 15 7 10 bnj1173 φψutrClxARBRFrSeAxAutrClxARRFrSeAuAvAvA
19 5 17 18 bnj1172 uvφψuBvAvRu¬vB
20 4 19 bnj1171 uvφψuBvB¬vRu
21 20 bnj1186 φψuBvB¬vRu
22 21 bnj1185 φψxByB¬yRx
23 22 bnj1185 φψwBzB¬zRw