Metamath Proof Explorer


Theorem bnj570

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj570.3 D=ω
bnj570.17 No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
bnj570.19 ηmDn=sucmpωm=sucp
bnj570.21 ρiωsucinmsuci
bnj570.24 K=yGipredyAR
bnj570.26 G=fmC
bnj570.40 RFrSeAτηGFnn
bnj570.30 No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
Assertion bnj570 RFrSeAτηρGsuci=K

Proof

Step Hyp Ref Expression
1 bnj570.3 D=ω
2 bnj570.17 Could not format ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) : No typesetting found for |- ( ta <-> ( f Fn m /\ ph' /\ ps' ) ) with typecode |-
3 bnj570.19 ηmDn=sucmpωm=sucp
4 bnj570.21 ρiωsucinmsuci
5 bnj570.24 K=yGipredyAR
6 bnj570.26 G=fmC
7 bnj570.40 RFrSeAτηGFnn
8 bnj570.30 Could not format ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) : No typesetting found for |- ( ps' <-> A. i e. _om ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) with typecode |-
9 bnj251 RFrSeAτηρRFrSeAτηρ
10 2 simp3bi Could not format ( ta -> ps' ) : No typesetting found for |- ( ta -> ps' ) with typecode |-
11 4 simp1bi ρiω
12 11 adantl ηρiω
13 3 4 bnj563 ηρsucim
14 12 13 jca ηρiωsucim
15 8 bnj946 Could not format ( ps' <-> A. i ( i e. _om -> ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) : No typesetting found for |- ( ps' <-> A. i ( i e. _om -> ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) with typecode |-
16 sp iiωsucimfsuci=yfipredyARiωsucimfsuci=yfipredyAR
17 15 16 sylbi Could not format ( ps' -> ( i e. _om -> ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) : No typesetting found for |- ( ps' -> ( i e. _om -> ( suc i e. m -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) ) ) with typecode |-
18 17 imp32 Could not format ( ( ps' /\ ( i e. _om /\ suc i e. m ) ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) : No typesetting found for |- ( ( ps' /\ ( i e. _om /\ suc i e. m ) ) -> ( f ` suc i ) = U_ y e. ( f ` i ) _pred ( y , A , R ) ) with typecode |-
19 10 14 18 syl2an τηρfsuci=yfipredyAR
20 9 19 simplbiim RFrSeAτηρfsuci=yfipredyAR
21 7 fnfund RFrSeAτηFunG
22 21 bnj721 RFrSeAτηρFunG
23 6 bnj931 fG
24 23 a1i RFrSeAτηρfG
25 bnj667 RFrSeAτηρτηρ
26 2 bnj564 τdomf=m
27 eleq2 domf=msucidomfsucim
28 27 biimpar domf=msucimsucidomf
29 26 13 28 syl2an τηρsucidomf
30 29 3impb τηρsucidomf
31 25 30 syl RFrSeAτηρsucidomf
32 22 24 31 bnj1502 RFrSeAτηρGsuci=fsuci
33 2 simp1bi τfFnm
34 bnj252 mDn=sucmpωm=sucpmDn=sucmpωm=sucp
35 34 simplbi mDn=sucmpωm=sucpmD
36 3 35 sylbi ηmD
37 eldifi mωmω
38 37 1 eleq2s mDmω
39 nnord mωOrdm
40 36 38 39 3syl ηOrdm
41 40 adantr ηρOrdm
42 41 13 jca ηρOrdmsucim
43 33 42 anim12i τηρfFnmOrdmsucim
44 fndm fFnmdomf=m
45 elelsuc sucimsucisucm
46 ordsucelsuc Ordmimsucisucm
47 46 biimpar Ordmsucisucmim
48 45 47 sylan2 Ordmsucimim
49 44 48 anim12i fFnmOrdmsucimdomf=mim
50 eleq2 domf=midomfim
51 50 biimpar domf=mimidomf
52 43 49 51 3syl τηρidomf
53 52 3impb τηρidomf
54 25 53 syl RFrSeAτηρidomf
55 22 24 54 bnj1502 RFrSeAτηρGi=fi
56 55 iuneq1d RFrSeAτηρyGipredyAR=yfipredyAR
57 20 32 56 3eqtr4d RFrSeAτηρGsuci=yGipredyAR
58 57 5 eqtr4di RFrSeAτηρGsuci=K