Metamath Proof Explorer


Theorem bnj849

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypotheses bnj849.1 φf=predXAR
bnj849.2 ψiωsucinfsuci=yfipredyAR
bnj849.3 D=ω
bnj849.4 B=f|nDfFnnφψ
bnj849.5 χRFrSeAXAnD
bnj849.6 θfFnnφψ
bnj849.7 No typesetting found for |- ( ph' <-> [. g / f ]. ph ) with typecode |-
bnj849.8 No typesetting found for |- ( ps' <-> [. g / f ]. ps ) with typecode |-
bnj849.9 No typesetting found for |- ( th' <-> [. g / f ]. th ) with typecode |-
bnj849.10 τRFrSeAXA
Assertion bnj849 RFrSeAXABV

Proof

Step Hyp Ref Expression
1 bnj849.1 φf=predXAR
2 bnj849.2 ψiωsucinfsuci=yfipredyAR
3 bnj849.3 D=ω
4 bnj849.4 B=f|nDfFnnφψ
5 bnj849.5 χRFrSeAXAnD
6 bnj849.6 θfFnnφψ
7 bnj849.7 Could not format ( ph' <-> [. g / f ]. ph ) : No typesetting found for |- ( ph' <-> [. g / f ]. ph ) with typecode |-
8 bnj849.8 Could not format ( ps' <-> [. g / f ]. ps ) : No typesetting found for |- ( ps' <-> [. g / f ]. ps ) with typecode |-
9 bnj849.9 Could not format ( th' <-> [. g / f ]. th ) : No typesetting found for |- ( th' <-> [. g / f ]. th ) with typecode |-
10 bnj849.10 τRFrSeAXA
11 1 2 3 5 6 bnj865 wnχfwθ
12 4 7 8 bnj873 Could not format B = { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } : No typesetting found for |- B = { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } with typecode |-
13 df-rex Could not format ( E. n e. D ( g Fn n /\ ph' /\ ps' ) <-> E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) : No typesetting found for |- ( E. n e. D ( g Fn n /\ ph' /\ ps' ) <-> E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) with typecode |-
14 19.29 Could not format ( ( A. n ( ch -> E. f e. w th ) /\ E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> E. n ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) ) : No typesetting found for |- ( ( A. n ( ch -> E. f e. w th ) /\ E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> E. n ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) ) with typecode |-
15 an12 Could not format ( ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) <-> ( n e. D /\ ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) ) ) : No typesetting found for |- ( ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) <-> ( n e. D /\ ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) ) ) with typecode |-
16 df-3an RFrSeAXAnDRFrSeAXAnD
17 10 anbi1i τnDRFrSeAXAnD
18 16 5 17 3bitr4i χτnD
19 id χχ
20 6 7 8 9 bnj581 Could not format ( th' <-> ( g Fn n /\ ph' /\ ps' ) ) : No typesetting found for |- ( th' <-> ( g Fn n /\ ph' /\ ps' ) ) with typecode |-
21 9 20 bitr3i Could not format ( [. g / f ]. th <-> ( g Fn n /\ ph' /\ ps' ) ) : No typesetting found for |- ( [. g / f ]. th <-> ( g Fn n /\ ph' /\ ps' ) ) with typecode |-
22 1 2 3 5 6 bnj864 χ∃!fθ
23 df-rex fwθffwθ
24 exancom ffwθfθfw
25 23 24 sylbb fwθfθfw
26 nfeu1 f∃!fθ
27 nfe1 ffθfw
28 26 27 nfan f∃!fθfθfw
29 nfsbc1v f[˙g/f]˙θ
30 nfv fgw
31 29 30 nfim f[˙g/f]˙θgw
32 28 31 nfim f∃!fθfθfw[˙g/f]˙θgw
33 sbceq1a f=gθ[˙g/f]˙θ
34 elequ1 f=gfwgw
35 33 34 imbi12d f=gθfw[˙g/f]˙θgw
36 35 imbi2d f=g∃!fθfθfwθfw∃!fθfθfw[˙g/f]˙θgw
37 eupick ∃!fθfθfwθfw
38 32 36 37 chvarfv ∃!fθfθfw[˙g/f]˙θgw
39 22 25 38 syl2an χfwθ[˙g/f]˙θgw
40 21 39 biimtrrid Could not format ( ( ch /\ E. f e. w th ) -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) : No typesetting found for |- ( ( ch /\ E. f e. w th ) -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) with typecode |-
41 40 ex Could not format ( ch -> ( E. f e. w th -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) ) : No typesetting found for |- ( ch -> ( E. f e. w th -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) ) with typecode |-
42 19 41 embantd Could not format ( ch -> ( ( ch -> E. f e. w th ) -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) ) : No typesetting found for |- ( ch -> ( ( ch -> E. f e. w th ) -> ( ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) ) with typecode |-
43 42 impd Could not format ( ch -> ( ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) : No typesetting found for |- ( ch -> ( ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) with typecode |-
44 18 43 sylbir Could not format ( ( ta /\ n e. D ) -> ( ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) : No typesetting found for |- ( ( ta /\ n e. D ) -> ( ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) with typecode |-
45 44 expimpd Could not format ( ta -> ( ( n e. D /\ ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) : No typesetting found for |- ( ta -> ( ( n e. D /\ ( ( ch -> E. f e. w th ) /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) with typecode |-
46 15 45 biimtrid Could not format ( ta -> ( ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) : No typesetting found for |- ( ta -> ( ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) with typecode |-
47 46 exlimdv Could not format ( ta -> ( E. n ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) : No typesetting found for |- ( ta -> ( E. n ( ( ch -> E. f e. w th ) /\ ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) with typecode |-
48 14 47 syl5 Could not format ( ta -> ( ( A. n ( ch -> E. f e. w th ) /\ E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) : No typesetting found for |- ( ta -> ( ( A. n ( ch -> E. f e. w th ) /\ E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) ) -> g e. w ) ) with typecode |-
49 48 expdimp Could not format ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> ( E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) : No typesetting found for |- ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> ( E. n ( n e. D /\ ( g Fn n /\ ph' /\ ps' ) ) -> g e. w ) ) with typecode |-
50 13 49 biimtrid Could not format ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> ( E. n e. D ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) : No typesetting found for |- ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> ( E. n e. D ( g Fn n /\ ph' /\ ps' ) -> g e. w ) ) with typecode |-
51 50 abssdv Could not format ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } C_ w ) : No typesetting found for |- ( ( ta /\ A. n ( ch -> E. f e. w th ) ) -> { g | E. n e. D ( g Fn n /\ ph' /\ ps' ) } C_ w ) with typecode |-
52 12 51 eqsstrid τnχfwθBw
53 vex wV
54 53 ssex BwBV
55 52 54 syl τnχfwθBV
56 55 ex τnχfwθBV
57 56 exlimdv τwnχfwθBV
58 11 57 mpi τBV
59 10 58 sylbir RFrSeAXABV