Metamath Proof Explorer


Theorem bnj849

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Mario Carneiro, 22-Dec-2016) (New usage is discouraged.)

Ref Expression
Hypotheses bnj849.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj849.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj849.3 𝐷 = ( ω ∖ { ∅ } )
bnj849.4 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj849.5 ( 𝜒 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) )
bnj849.6 ( 𝜃 ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
bnj849.7 ( 𝜑′[ 𝑔 / 𝑓 ] 𝜑 )
bnj849.8 ( 𝜓′[ 𝑔 / 𝑓 ] 𝜓 )
bnj849.9 ( 𝜃′[ 𝑔 / 𝑓 ] 𝜃 )
bnj849.10 ( 𝜏 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
Assertion bnj849 ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → 𝐵 ∈ V )

Proof

Step Hyp Ref Expression
1 bnj849.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj849.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj849.3 𝐷 = ( ω ∖ { ∅ } )
4 bnj849.4 𝐵 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
5 bnj849.5 ( 𝜒 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) )
6 bnj849.6 ( 𝜃 ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
7 bnj849.7 ( 𝜑′[ 𝑔 / 𝑓 ] 𝜑 )
8 bnj849.8 ( 𝜓′[ 𝑔 / 𝑓 ] 𝜓 )
9 bnj849.9 ( 𝜃′[ 𝑔 / 𝑓 ] 𝜃 )
10 bnj849.10 ( 𝜏 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
11 1 2 3 5 6 bnj865 𝑤𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 )
12 4 7 8 bnj873 𝐵 = { 𝑔 ∣ ∃ 𝑛𝐷 ( 𝑔 Fn 𝑛𝜑′𝜓′ ) }
13 df-rex ( ∃ 𝑛𝐷 ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ↔ ∃ 𝑛 ( 𝑛𝐷 ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) )
14 19.29 ( ( ∀ 𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ∧ ∃ 𝑛 ( 𝑛𝐷 ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) ) → ∃ 𝑛 ( ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ∧ ( 𝑛𝐷 ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) ) )
15 an12 ( ( ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ∧ ( 𝑛𝐷 ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) ) ↔ ( 𝑛𝐷 ∧ ( ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) ) )
16 df-3an ( ( 𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷 ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑛𝐷 ) )
17 10 anbi1i ( ( 𝜏𝑛𝐷 ) ↔ ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) ∧ 𝑛𝐷 ) )
18 16 5 17 3bitr4i ( 𝜒 ↔ ( 𝜏𝑛𝐷 ) )
19 id ( 𝜒𝜒 )
20 6 7 8 9 bnj581 ( 𝜃′ ↔ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) )
21 9 20 bitr3i ( [ 𝑔 / 𝑓 ] 𝜃 ↔ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) )
22 1 2 3 5 6 bnj864 ( 𝜒 → ∃! 𝑓 𝜃 )
23 df-rex ( ∃ 𝑓𝑤 𝜃 ↔ ∃ 𝑓 ( 𝑓𝑤𝜃 ) )
24 exancom ( ∃ 𝑓 ( 𝑓𝑤𝜃 ) ↔ ∃ 𝑓 ( 𝜃𝑓𝑤 ) )
25 23 24 sylbb ( ∃ 𝑓𝑤 𝜃 → ∃ 𝑓 ( 𝜃𝑓𝑤 ) )
26 nfeu1 𝑓 ∃! 𝑓 𝜃
27 nfe1 𝑓𝑓 ( 𝜃𝑓𝑤 )
28 26 27 nfan 𝑓 ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃𝑓𝑤 ) )
29 nfsbc1v 𝑓 [ 𝑔 / 𝑓 ] 𝜃
30 nfv 𝑓 𝑔𝑤
31 29 30 nfim 𝑓 ( [ 𝑔 / 𝑓 ] 𝜃𝑔𝑤 )
32 28 31 nfim 𝑓 ( ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃𝑓𝑤 ) ) → ( [ 𝑔 / 𝑓 ] 𝜃𝑔𝑤 ) )
33 sbceq1a ( 𝑓 = 𝑔 → ( 𝜃[ 𝑔 / 𝑓 ] 𝜃 ) )
34 elequ1 ( 𝑓 = 𝑔 → ( 𝑓𝑤𝑔𝑤 ) )
35 33 34 imbi12d ( 𝑓 = 𝑔 → ( ( 𝜃𝑓𝑤 ) ↔ ( [ 𝑔 / 𝑓 ] 𝜃𝑔𝑤 ) ) )
36 35 imbi2d ( 𝑓 = 𝑔 → ( ( ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃𝑓𝑤 ) ) → ( 𝜃𝑓𝑤 ) ) ↔ ( ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃𝑓𝑤 ) ) → ( [ 𝑔 / 𝑓 ] 𝜃𝑔𝑤 ) ) ) )
37 eupick ( ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃𝑓𝑤 ) ) → ( 𝜃𝑓𝑤 ) )
38 32 36 37 chvarfv ( ( ∃! 𝑓 𝜃 ∧ ∃ 𝑓 ( 𝜃𝑓𝑤 ) ) → ( [ 𝑔 / 𝑓 ] 𝜃𝑔𝑤 ) )
39 22 25 38 syl2an ( ( 𝜒 ∧ ∃ 𝑓𝑤 𝜃 ) → ( [ 𝑔 / 𝑓 ] 𝜃𝑔𝑤 ) )
40 21 39 syl5bir ( ( 𝜒 ∧ ∃ 𝑓𝑤 𝜃 ) → ( ( 𝑔 Fn 𝑛𝜑′𝜓′ ) → 𝑔𝑤 ) )
41 40 ex ( 𝜒 → ( ∃ 𝑓𝑤 𝜃 → ( ( 𝑔 Fn 𝑛𝜑′𝜓′ ) → 𝑔𝑤 ) ) )
42 19 41 embantd ( 𝜒 → ( ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) → ( ( 𝑔 Fn 𝑛𝜑′𝜓′ ) → 𝑔𝑤 ) ) )
43 42 impd ( 𝜒 → ( ( ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) → 𝑔𝑤 ) )
44 18 43 sylbir ( ( 𝜏𝑛𝐷 ) → ( ( ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) → 𝑔𝑤 ) )
45 44 expimpd ( 𝜏 → ( ( 𝑛𝐷 ∧ ( ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) ) → 𝑔𝑤 ) )
46 15 45 syl5bi ( 𝜏 → ( ( ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ∧ ( 𝑛𝐷 ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) ) → 𝑔𝑤 ) )
47 46 exlimdv ( 𝜏 → ( ∃ 𝑛 ( ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ∧ ( 𝑛𝐷 ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) ) → 𝑔𝑤 ) )
48 14 47 syl5 ( 𝜏 → ( ( ∀ 𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ∧ ∃ 𝑛 ( 𝑛𝐷 ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) ) → 𝑔𝑤 ) )
49 48 expdimp ( ( 𝜏 ∧ ∀ 𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ) → ( ∃ 𝑛 ( 𝑛𝐷 ∧ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) ) → 𝑔𝑤 ) )
50 13 49 syl5bi ( ( 𝜏 ∧ ∀ 𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ) → ( ∃ 𝑛𝐷 ( 𝑔 Fn 𝑛𝜑′𝜓′ ) → 𝑔𝑤 ) )
51 50 abssdv ( ( 𝜏 ∧ ∀ 𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ) → { 𝑔 ∣ ∃ 𝑛𝐷 ( 𝑔 Fn 𝑛𝜑′𝜓′ ) } ⊆ 𝑤 )
52 12 51 eqsstrid ( ( 𝜏 ∧ ∀ 𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ) → 𝐵𝑤 )
53 vex 𝑤 ∈ V
54 53 ssex ( 𝐵𝑤𝐵 ∈ V )
55 52 54 syl ( ( 𝜏 ∧ ∀ 𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) ) → 𝐵 ∈ V )
56 55 ex ( 𝜏 → ( ∀ 𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) → 𝐵 ∈ V ) )
57 56 exlimdv ( 𝜏 → ( ∃ 𝑤𝑛 ( 𝜒 → ∃ 𝑓𝑤 𝜃 ) → 𝐵 ∈ V ) )
58 11 57 mpi ( 𝜏𝐵 ∈ V )
59 10 58 sylbir ( ( 𝑅 FrSe 𝐴𝑋𝐴 ) → 𝐵 ∈ V )