Metamath Proof Explorer


Theorem bnj906

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj906 RFrSeAXApredXARtrClXAR

Proof

Step Hyp Ref Expression
1 1onn 1𝑜ω
2 1n0 1𝑜
3 eldifsn 1𝑜ω1𝑜ω1𝑜
4 1 2 3 mpbir2an 1𝑜ω
5 4 ne0ii ω
6 biid f=predXARf=predXAR
7 biid iωsucinfsuci=yfipredyARiωsucinfsuci=yfipredyAR
8 eqid ω=ω
9 6 7 8 bnj852 RFrSeAXAnω∃!ffFnnf=predXARiωsucinfsuci=yfipredyAR
10 r19.2z ωnω∃!ffFnnf=predXARiωsucinfsuci=yfipredyARnω∃!ffFnnf=predXARiωsucinfsuci=yfipredyAR
11 5 9 10 sylancr RFrSeAXAnω∃!ffFnnf=predXARiωsucinfsuci=yfipredyAR
12 euex ∃!ffFnnf=predXARiωsucinfsuci=yfipredyARffFnnf=predXARiωsucinfsuci=yfipredyAR
13 11 12 bnj31 RFrSeAXAnωffFnnf=predXARiωsucinfsuci=yfipredyAR
14 rexcom4 nωffFnnf=predXARiωsucinfsuci=yfipredyARfnωfFnnf=predXARiωsucinfsuci=yfipredyAR
15 13 14 sylib RFrSeAXAfnωfFnnf=predXARiωsucinfsuci=yfipredyAR
16 abid ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARnωfFnnf=predXARiωsucinfsuci=yfipredyAR
17 15 16 bnj1198 RFrSeAXAfff|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
18 simp2 fFnnf=predXARiωsucinfsuci=yfipredyARf=predXAR
19 18 reximi nωfFnnf=predXARiωsucinfsuci=yfipredyARnωf=predXAR
20 16 19 sylbi ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARnωf=predXAR
21 df-rex nωf=predXARnnωf=predXAR
22 19.41v nnωf=predXARnnωf=predXAR
23 22 simprbi nnωf=predXARf=predXAR
24 21 23 sylbi nωf=predXARf=predXAR
25 20 24 syl ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARf=predXAR
26 eqid f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR=f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
27 8 26 bnj900 ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARdomf
28 fveq2 i=fi=f
29 28 ssiun2s domffidomffi
30 27 29 syl ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARfidomffi
31 ssiun2 ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffiff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi
32 6 7 8 26 bnj882 trClXAR=ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffi
33 31 32 sseqtrrdi ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARidomffitrClXAR
34 30 33 sstrd ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARftrClXAR
35 25 34 eqsstrrd ff|nωfFnnf=predXARiωsucinfsuci=yfipredyARpredXARtrClXAR
36 35 exlimiv fff|nωfFnnf=predXARiωsucinfsuci=yfipredyARpredXARtrClXAR
37 17 36 syl RFrSeAXApredXARtrClXAR