Metamath Proof Explorer


Theorem bnj967

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj967.2 ψiωsucinfsuci=yfipredyAR
bnj967.3 χnDfFnnφψ
bnj967.10 D=ω
bnj967.12 C=yfmpredyAR
bnj967.13 G=fnC
bnj967.44 RFrSeAXAχn=sucmp=sucnCV
Assertion bnj967 RFrSeAXAχn=sucmp=sucniωsucipsucinGsuci=yGipredyAR

Proof

Step Hyp Ref Expression
1 bnj967.2 ψiωsucinfsuci=yfipredyAR
2 bnj967.3 χnDfFnnφψ
3 bnj967.10 D=ω
4 bnj967.12 C=yfmpredyAR
5 bnj967.13 G=fnC
6 bnj967.44 RFrSeAXAχn=sucmp=sucnCV
7 6 3adant3 RFrSeAXAχn=sucmp=sucniωsucipsucinCV
8 2 bnj1235 χfFnn
9 8 3ad2ant1 χn=sucmp=sucnfFnn
10 9 3ad2ant2 RFrSeAXAχn=sucmp=sucniωsucipsucinfFnn
11 simp23 RFrSeAXAχn=sucmp=sucniωsucipsucinp=sucn
12 simp3 iωsucipsucinsucin
13 12 3ad2ant3 RFrSeAXAχn=sucmp=sucniωsucipsucinsucin
14 7 10 11 13 bnj951 RFrSeAXAχn=sucmp=sucniωsucipsucinCVfFnnp=sucnsucin
15 3 bnj923 nDnω
16 2 15 bnj769 χnω
17 16 3ad2ant1 χn=sucmp=sucnnω
18 17 12 bnj240 RFrSeAXAχn=sucmp=sucniωsucipsucinnωsucin
19 nnord nωOrdn
20 ordtr OrdnTrn
21 19 20 syl nωTrn
22 trsuc Trnsucinin
23 21 22 sylan nωsucinin
24 18 23 syl RFrSeAXAχn=sucmp=sucniωsucipsucinin
25 bnj658 CVfFnnp=sucnsucinCVfFnnp=sucn
26 25 anim1i CVfFnnp=sucnsucininCVfFnnp=sucnin
27 df-bnj17 CVfFnnp=sucninCVfFnnp=sucnin
28 26 27 sylibr CVfFnnp=sucnsucininCVfFnnp=sucnin
29 14 24 28 syl2anc RFrSeAXAχn=sucmp=sucniωsucipsucinCVfFnnp=sucnin
30 5 bnj945 CVfFnnp=sucninGi=fi
31 29 30 syl RFrSeAXAχn=sucmp=sucniωsucipsucinGi=fi
32 5 bnj945 CVfFnnp=sucnsucinGsuci=fsuci
33 14 32 syl RFrSeAXAχn=sucmp=sucniωsucipsucinGsuci=fsuci
34 3simpb iωsucipsuciniωsucin
35 34 3ad2ant3 RFrSeAXAχn=sucmp=sucniωsucipsuciniωsucin
36 2 bnj1254 χψ
37 36 3ad2ant1 χn=sucmp=sucnψ
38 37 3ad2ant2 RFrSeAXAχn=sucmp=sucniωsucipsucinψ
39 31 33 35 38 bnj951 RFrSeAXAχn=sucmp=sucniωsucipsucinGi=fiGsuci=fsuciiωsucinψ
40 4 5 bnj958 Gi=fiyGi=fi
41 1 40 bnj953 Gi=fiGsuci=fsuciiωsucinψGsuci=yGipredyAR
42 39 41 syl RFrSeAXAχn=sucmp=sucniωsucipsucinGsuci=yGipredyAR