Metamath Proof Explorer


Theorem bnj983

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj983.1 φf=predXAR
bnj983.2 ψiωsucinfsuci=yfipredyAR
bnj983.3 D=ω
bnj983.4 B=f|nDfFnnφψ
bnj983.5 χnDfFnnφψ
Assertion bnj983 ZtrClXARfniχinZfi

Proof

Step Hyp Ref Expression
1 bnj983.1 φf=predXAR
2 bnj983.2 ψiωsucinfsuci=yfipredyAR
3 bnj983.3 D=ω
4 bnj983.4 B=f|nDfFnnφψ
5 bnj983.5 χnDfFnnφψ
6 1 2 3 4 bnj882 trClXAR=fBidomffi
7 6 eleq2i ZtrClXARZfBidomffi
8 eliun ZfBidomffifBZidomffi
9 eliun ZidomffiidomfZfi
10 9 rexbii fBZidomffifBidomfZfi
11 8 10 bitri ZfBidomffifBidomfZfi
12 df-rex fBidomfZfiffBidomfZfi
13 4 eqabri fBnDfFnnφψ
14 13 anbi1i fBidomfZfinDfFnnφψidomfZfi
15 14 exbii ffBidomfZfifnDfFnnφψidomfZfi
16 12 15 bitri fBidomfZfifnDfFnnφψidomfZfi
17 7 11 16 3bitri ZtrClXARfnDfFnnφψidomfZfi
18 bnj252 nDfFnnφψnDfFnnφψ
19 5 18 bitri χnDfFnnφψ
20 19 exbii nχnnDfFnnφψ
21 20 anbi1i nχiidomfZfinnDfFnnφψiidomfZfi
22 df-rex nDfFnnφψnnDfFnnφψ
23 df-rex idomfZfiiidomfZfi
24 22 23 anbi12i nDfFnnφψidomfZfinnDfFnnφψiidomfZfi
25 21 24 bitr4i nχiidomfZfinDfFnnφψidomfZfi
26 17 25 bnj133 ZtrClXARfnχiidomfZfi
27 19.41v nχiidomfZfinχiidomfZfi
28 26 27 bnj133 ZtrClXARfnχiidomfZfi
29 2 bnj1095 ψiψ
30 29 5 bnj1096 χiχ
31 30 nf5i iχ
32 31 19.42 iχidomfZfiχiidomfZfi
33 32 2exbii fniχidomfZfifnχiidomfZfi
34 28 33 bitr4i ZtrClXARfniχidomfZfi
35 3anass χidomfZfiχidomfZfi
36 35 3exbii fniχidomfZfifniχidomfZfi
37 fndm fFnndomf=n
38 5 37 bnj770 χdomf=n
39 eleq2 domf=nidomfin
40 39 3anbi2d domf=nχidomfZfiχinZfi
41 38 40 syl χχidomfZfiχinZfi
42 41 3ad2ant1 χidomfZfiχidomfZfiχinZfi
43 42 ibi χidomfZfiχinZfi
44 41 3ad2ant1 χinZfiχidomfZfiχinZfi
45 44 ibir χinZfiχidomfZfi
46 43 45 impbii χidomfZfiχinZfi
47 46 3exbii fniχidomfZfifniχinZfi
48 34 36 47 3bitr2i ZtrClXARfniχinZfi