Metamath Proof Explorer


Theorem br2base

Description: The base set for the generator of the Borel sigma-algebra on ( RR X. RR ) is indeed ( RR X. RR ) . (Contributed by Thierry Arnoux, 22-Sep-2017)

Ref Expression
Assertion br2base ran x 𝔅 , y 𝔅 x × y = 2

Proof

Step Hyp Ref Expression
1 brsigasspwrn 𝔅 𝒫
2 1 sseli x 𝔅 x 𝒫
3 2 elpwid x 𝔅 x
4 1 sseli y 𝔅 y 𝒫
5 4 elpwid y 𝔅 y
6 xpss12 x y x × y 2
7 3 5 6 syl2an x 𝔅 y 𝔅 x × y 2
8 vex x V
9 vex y V
10 8 9 xpex x × y V
11 10 elpw x × y 𝒫 2 x × y 2
12 7 11 sylibr x 𝔅 y 𝔅 x × y 𝒫 2
13 12 rgen2 x 𝔅 y 𝔅 x × y 𝒫 2
14 eqid x 𝔅 , y 𝔅 x × y = x 𝔅 , y 𝔅 x × y
15 14 rnmposs x 𝔅 y 𝔅 x × y 𝒫 2 ran x 𝔅 , y 𝔅 x × y 𝒫 2
16 13 15 ax-mp ran x 𝔅 , y 𝔅 x × y 𝒫 2
17 unibrsiga 𝔅 =
18 brsigarn 𝔅 sigAlgebra
19 elrnsiga 𝔅 sigAlgebra 𝔅 ran sigAlgebra
20 unielsiga 𝔅 ran sigAlgebra 𝔅 𝔅
21 18 19 20 mp2b 𝔅 𝔅
22 17 21 eqeltrri 𝔅
23 eqid 2 = 2
24 xpeq1 x = x × y = × y
25 24 eqeq2d x = 2 = x × y 2 = × y
26 xpeq2 y = × y = 2
27 26 eqeq2d y = 2 = × y 2 = 2
28 25 27 rspc2ev 𝔅 𝔅 2 = 2 x 𝔅 y 𝔅 2 = x × y
29 22 22 23 28 mp3an x 𝔅 y 𝔅 2 = x × y
30 14 10 elrnmpo 2 ran x 𝔅 , y 𝔅 x × y x 𝔅 y 𝔅 2 = x × y
31 29 30 mpbir 2 ran x 𝔅 , y 𝔅 x × y
32 elpwuni 2 ran x 𝔅 , y 𝔅 x × y ran x 𝔅 , y 𝔅 x × y 𝒫 2 ran x 𝔅 , y 𝔅 x × y = 2
33 31 32 ax-mp ran x 𝔅 , y 𝔅 x × y 𝒫 2 ran x 𝔅 , y 𝔅 x × y = 2
34 16 33 mpbi ran x 𝔅 , y 𝔅 x × y = 2