Metamath Proof Explorer


Theorem brae

Description: 'almost everywhere' relation for a measure and a measurable set A . (Contributed by Thierry Arnoux, 20-Oct-2017)

Ref Expression
Assertion brae MranmeasuresAdomMAM-ae.MdomMA=0

Proof

Step Hyp Ref Expression
1 simpr a=Am=Mm=M
2 1 dmeqd a=Am=Mdomm=domM
3 2 unieqd a=Am=Mdomm=domM
4 simpl a=Am=Ma=A
5 3 4 difeq12d a=Am=Mdomma=domMA
6 1 5 fveq12d a=Am=Mmdomma=MdomMA
7 6 eqeq1d a=Am=Mmdomma=0MdomMA=0
8 df-ae ae=am|mdomma=0
9 7 8 brabga AdomMMranmeasuresAM-ae.MdomMA=0
10 9 ancoms MranmeasuresAdomMAM-ae.MdomMA=0