Metamath Proof Explorer


Theorem brtpos

Description: The transposition swaps arguments of a three-parameter relation. (Contributed by Mario Carneiro, 10-Sep-2015)

Ref Expression
Assertion brtpos CVABtposFCBAFC

Proof

Step Hyp Ref Expression
1 brtpos2 CVABtposFCABdomF-1AB-1FC
2 1 adantr CVAVBVABtposFCABdomF-1AB-1FC
3 opex BAV
4 breldmg BAVCVBAFCBAdomF
5 4 3expia BAVCVBAFCBAdomF
6 3 5 mpan CVBAFCBAdomF
7 6 adantr CVAVBVBAFCBAdomF
8 opelcnvg AVBVABdomF-1BAdomF
9 8 adantl CVAVBVABdomF-1BAdomF
10 7 9 sylibrd CVAVBVBAFCABdomF-1
11 elun1 ABdomF-1ABdomF-1
12 10 11 syl6 CVAVBVBAFCABdomF-1
13 12 pm4.71rd CVAVBVBAFCABdomF-1BAFC
14 opswap AB-1=BA
15 14 breq1i AB-1FCBAFC
16 15 anbi2i ABdomF-1AB-1FCABdomF-1BAFC
17 13 16 bitr4di CVAVBVBAFCABdomF-1AB-1FC
18 2 17 bitr4d CVAVBVABtposFCBAFC
19 18 ex CVAVBVABtposFCBAFC
20 brtpos0 CVtposFCFC
21 opprc ¬AVBVAB=
22 21 breq1d ¬AVBVABtposFCtposFC
23 ancom AVBVBVAV
24 opprc ¬BVAVBA=
25 24 breq1d ¬BVAVBAFCFC
26 23 25 sylnbi ¬AVBVBAFCFC
27 22 26 bibi12d ¬AVBVABtposFCBAFCtposFCFC
28 20 27 syl5ibrcom CV¬AVBVABtposFCBAFC
29 19 28 pm2.61d CVABtposFCBAFC