Metamath Proof Explorer


Theorem brwdom3

Description: Condition for weak dominance with a condition reminiscent of wdomd . (Contributed by Stefan O'Rear, 13-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion brwdom3 XVYWX*YfxXyYx=fy

Proof

Step Hyp Ref Expression
1 elex XVXV
2 elex YWYV
3 brwdom2 YVX*Yz𝒫Yff:zontoX
4 3 adantl XVYVX*Yz𝒫Yff:zontoX
5 dffo3 f:zontoXf:zXxXyzx=fy
6 5 simprbi f:zontoXxXyzx=fy
7 elpwi z𝒫YzY
8 ssrexv zYyzx=fyyYx=fy
9 7 8 syl z𝒫Yyzx=fyyYx=fy
10 9 adantl XVYVz𝒫Yyzx=fyyYx=fy
11 10 ralimdv XVYVz𝒫YxXyzx=fyxXyYx=fy
12 6 11 syl5 XVYVz𝒫Yf:zontoXxXyYx=fy
13 12 eximdv XVYVz𝒫Yff:zontoXfxXyYx=fy
14 13 rexlimdva XVYVz𝒫Yff:zontoXfxXyYx=fy
15 4 14 sylbid XVYVX*YfxXyYx=fy
16 simpll XVYVxXyYx=fyXV
17 simplr XVYVxXyYx=fyYV
18 eqeq1 x=zx=fyz=fy
19 18 rexbidv x=zyYx=fyyYz=fy
20 fveq2 y=wfy=fw
21 20 eqeq2d y=wz=fyz=fw
22 21 cbvrexvw yYz=fywYz=fw
23 19 22 bitrdi x=zyYx=fywYz=fw
24 23 cbvralvw xXyYx=fyzXwYz=fw
25 24 biimpi xXyYx=fyzXwYz=fw
26 25 adantl XVYVxXyYx=fyzXwYz=fw
27 26 r19.21bi XVYVxXyYx=fyzXwYz=fw
28 16 17 27 wdom2d XVYVxXyYx=fyX*Y
29 28 ex XVYVxXyYx=fyX*Y
30 29 exlimdv XVYVfxXyYx=fyX*Y
31 15 30 impbid XVYVX*YfxXyYx=fy
32 1 2 31 syl2an XVYWX*YfxXyYx=fy