| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cantnfs.s |
|
| 2 |
|
cantnfs.a |
|
| 3 |
|
cantnfs.b |
|
| 4 |
|
oemapval.t |
|
| 5 |
|
cantnf.c |
|
| 6 |
|
cantnf.s |
|
| 7 |
|
cantnf.e |
|
| 8 |
|
oecl |
|
| 9 |
2 3 8
|
syl2anc |
|
| 10 |
|
onelon |
|
| 11 |
9 5 10
|
syl2anc |
|
| 12 |
|
ondif1 |
|
| 13 |
11 7 12
|
sylanbrc |
|
| 14 |
13
|
eldifbd |
|
| 15 |
|
ssel |
|
| 16 |
5 15
|
syl5com |
|
| 17 |
14 16
|
mtod |
|
| 18 |
|
oe0m |
|
| 19 |
3 18
|
syl |
|
| 20 |
|
difss |
|
| 21 |
19 20
|
eqsstrdi |
|
| 22 |
|
oveq1 |
|
| 23 |
22
|
sseq1d |
|
| 24 |
21 23
|
syl5ibrcom |
|
| 25 |
|
oe1m |
|
| 26 |
|
eqimss |
|
| 27 |
3 25 26
|
3syl |
|
| 28 |
|
oveq1 |
|
| 29 |
28
|
sseq1d |
|
| 30 |
27 29
|
syl5ibrcom |
|
| 31 |
24 30
|
jaod |
|
| 32 |
17 31
|
mtod |
|
| 33 |
|
elpri |
|
| 34 |
|
df2o3 |
|
| 35 |
33 34
|
eleq2s |
|
| 36 |
32 35
|
nsyl |
|
| 37 |
2 36
|
eldifd |
|
| 38 |
37 13
|
jca |
|