Metamath Proof Explorer


Theorem caofid1

Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses caofref.1 φAV
caofref.2 φF:AS
caofid0.3 φBW
caofid1.4 φCX
caofid1.5 φxSxRB=C
Assertion caofid1 φFRfA×B=A×C

Proof

Step Hyp Ref Expression
1 caofref.1 φAV
2 caofref.2 φF:AS
3 caofid0.3 φBW
4 caofid1.4 φCX
5 caofid1.5 φxSxRB=C
6 2 ffnd φFFnA
7 fnconstg BWA×BFnA
8 3 7 syl φA×BFnA
9 fnconstg CXA×CFnA
10 4 9 syl φA×CFnA
11 eqidd φwAFw=Fw
12 fvconst2g BWwAA×Bw=B
13 3 12 sylan φwAA×Bw=B
14 5 ralrimiva φxSxRB=C
15 2 ffvelcdmda φwAFwS
16 oveq1 x=FwxRB=FwRB
17 16 eqeq1d x=FwxRB=CFwRB=C
18 17 rspccva xSxRB=CFwSFwRB=C
19 14 15 18 syl2an2r φwAFwRB=C
20 fvconst2g CXwAA×Cw=C
21 4 20 sylan φwAA×Cw=C
22 19 21 eqtr4d φwAFwRB=A×Cw
23 1 6 8 10 11 13 22 offveq φFRfA×B=A×C