Metamath Proof Explorer


Theorem caofid2

Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses caofref.1 φAV
caofref.2 φF:AS
caofid0.3 φBW
caofid1.4 φCX
caofid2.5 φxSBRx=C
Assertion caofid2 φA×BRfF=A×C

Proof

Step Hyp Ref Expression
1 caofref.1 φAV
2 caofref.2 φF:AS
3 caofid0.3 φBW
4 caofid1.4 φCX
5 caofid2.5 φxSBRx=C
6 fnconstg BWA×BFnA
7 3 6 syl φA×BFnA
8 2 ffnd φFFnA
9 fnconstg CXA×CFnA
10 4 9 syl φA×CFnA
11 fvconst2g BWwAA×Bw=B
12 3 11 sylan φwAA×Bw=B
13 eqidd φwAFw=Fw
14 5 ralrimiva φxSBRx=C
15 2 ffvelcdmda φwAFwS
16 oveq2 x=FwBRx=BRFw
17 16 eqeq1d x=FwBRx=CBRFw=C
18 17 rspccva xSBRx=CFwSBRFw=C
19 14 15 18 syl2an2r φwABRFw=C
20 fvconst2g CXwAA×Cw=C
21 4 20 sylan φwAA×Cw=C
22 19 21 eqtr4d φwABRFw=A×Cw
23 1 7 8 10 12 13 22 offveq φA×BRfF=A×C