Metamath Proof Explorer


Theorem caragensplit

Description: If E is in the set generated by the Caratheodory's method, then it splits any set A in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set A . (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragensplit.o φOOutMeas
caragensplit.s S=CaraGenO
caragensplit.x X=domO
caragensplit.e φES
caragensplit.a φAX
Assertion caragensplit φOAE+𝑒OAE=OA

Proof

Step Hyp Ref Expression
1 caragensplit.o φOOutMeas
2 caragensplit.s S=CaraGenO
3 caragensplit.x X=domO
4 caragensplit.e φES
5 caragensplit.a φAX
6 1 3 unidmex φXV
7 ssexg AXXVAV
8 5 6 7 syl2anc φAV
9 elpwg AVA𝒫XAX
10 8 9 syl φA𝒫XAX
11 5 10 mpbird φA𝒫X
12 3 pweqi 𝒫X=𝒫domO
13 11 12 eleqtrdi φA𝒫domO
14 1 2 caragenel φESE𝒫domOa𝒫domOOaE+𝑒OaE=Oa
15 4 14 mpbid φE𝒫domOa𝒫domOOaE+𝑒OaE=Oa
16 15 simprd φa𝒫domOOaE+𝑒OaE=Oa
17 ineq1 a=AaE=AE
18 17 fveq2d a=AOaE=OAE
19 difeq1 a=AaE=AE
20 19 fveq2d a=AOaE=OAE
21 18 20 oveq12d a=AOaE+𝑒OaE=OAE+𝑒OAE
22 fveq2 a=AOa=OA
23 21 22 eqeq12d a=AOaE+𝑒OaE=OaOAE+𝑒OAE=OA
24 23 rspcva A𝒫domOa𝒫domOOaE+𝑒OaE=OaOAE+𝑒OAE=OA
25 13 16 24 syl2anc φOAE+𝑒OAE=OA