Metamath Proof Explorer


Theorem catideu

Description: Each object in a category has a unique identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses catidex.b B=BaseC
catidex.h H=HomC
catidex.o ·˙=compC
catidex.c φCCat
catidex.x φXB
Assertion catideu φ∃!gXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f

Proof

Step Hyp Ref Expression
1 catidex.b B=BaseC
2 catidex.h H=HomC
3 catidex.o ·˙=compC
4 catidex.c φCCat
5 catidex.x φXB
6 1 2 3 4 5 catidex φgXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
7 oveq1 y=XyHX=XHX
8 opeq1 y=XyX=XX
9 8 oveq1d y=XyX·˙X=XX·˙X
10 9 oveqd y=XgyX·˙Xf=gXX·˙Xf
11 10 eqeq1d y=XgyX·˙Xf=fgXX·˙Xf=f
12 7 11 raleqbidv y=XfyHXgyX·˙Xf=ffXHXgXX·˙Xf=f
13 oveq2 y=XXHy=XHX
14 oveq2 y=XXX·˙y=XX·˙X
15 14 oveqd y=XfXX·˙yg=fXX·˙Xg
16 15 eqeq1d y=XfXX·˙yg=ffXX·˙Xg=f
17 13 16 raleqbidv y=XfXHyfXX·˙yg=ffXHXfXX·˙Xg=f
18 12 17 anbi12d y=XfyHXgyX·˙Xf=ffXHyfXX·˙yg=ffXHXgXX·˙Xf=ffXHXfXX·˙Xg=f
19 18 rspcv XByBfyHXgyX·˙Xf=ffXHyfXX·˙yg=ffXHXgXX·˙Xf=ffXHXfXX·˙Xg=f
20 5 19 syl φyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=ffXHXgXX·˙Xf=ffXHXfXX·˙Xg=f
21 20 ralrimivw φgXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=ffXHXgXX·˙Xf=ffXHXfXX·˙Xg=f
22 an3 fXHXgXX·˙Xf=ffXHXfXX·˙Xg=ffXHXhXX·˙Xf=ffXHXfXX·˙Xh=ffXHXgXX·˙Xf=ffXHXfXX·˙Xh=f
23 oveq2 f=hgXX·˙Xf=gXX·˙Xh
24 id f=hf=h
25 23 24 eqeq12d f=hgXX·˙Xf=fgXX·˙Xh=h
26 25 rspcv hXHXfXHXgXX·˙Xf=fgXX·˙Xh=h
27 oveq1 f=gfXX·˙Xh=gXX·˙Xh
28 id f=gf=g
29 27 28 eqeq12d f=gfXX·˙Xh=fgXX·˙Xh=g
30 29 rspcv gXHXfXHXfXX·˙Xh=fgXX·˙Xh=g
31 26 30 im2anan9r gXHXhXHXfXHXgXX·˙Xf=ffXHXfXX·˙Xh=fgXX·˙Xh=hgXX·˙Xh=g
32 eqtr2 gXX·˙Xh=hgXX·˙Xh=gh=g
33 32 equcomd gXX·˙Xh=hgXX·˙Xh=gg=h
34 22 31 33 syl56 gXHXhXHXfXHXgXX·˙Xf=ffXHXfXX·˙Xg=ffXHXhXX·˙Xf=ffXHXfXX·˙Xh=fg=h
35 34 rgen2 gXHXhXHXfXHXgXX·˙Xf=ffXHXfXX·˙Xg=ffXHXhXX·˙Xf=ffXHXfXX·˙Xh=fg=h
36 35 a1i φgXHXhXHXfXHXgXX·˙Xf=ffXHXfXX·˙Xg=ffXHXhXX·˙Xf=ffXHXfXX·˙Xh=fg=h
37 oveq1 g=hgXX·˙Xf=hXX·˙Xf
38 37 eqeq1d g=hgXX·˙Xf=fhXX·˙Xf=f
39 38 ralbidv g=hfXHXgXX·˙Xf=ffXHXhXX·˙Xf=f
40 oveq2 g=hfXX·˙Xg=fXX·˙Xh
41 40 eqeq1d g=hfXX·˙Xg=ffXX·˙Xh=f
42 41 ralbidv g=hfXHXfXX·˙Xg=ffXHXfXX·˙Xh=f
43 39 42 anbi12d g=hfXHXgXX·˙Xf=ffXHXfXX·˙Xg=ffXHXhXX·˙Xf=ffXHXfXX·˙Xh=f
44 43 rmo4 *gXHXfXHXgXX·˙Xf=ffXHXfXX·˙Xg=fgXHXhXHXfXHXgXX·˙Xf=ffXHXfXX·˙Xg=ffXHXhXX·˙Xf=ffXHXfXX·˙Xh=fg=h
45 36 44 sylibr φ*gXHXfXHXgXX·˙Xf=ffXHXfXX·˙Xg=f
46 rmoim gXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=ffXHXgXX·˙Xf=ffXHXfXX·˙Xg=f*gXHXfXHXgXX·˙Xf=ffXHXfXX·˙Xg=f*gXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
47 21 45 46 sylc φ*gXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
48 reu5 ∃!gXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=fgXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f*gXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f
49 6 47 48 sylanbrc φ∃!gXHXyBfyHXgyX·˙Xf=ffXHyfXX·˙yg=f