| Step | Hyp | Ref | Expression | 
						
							| 1 |  | catidcl.b |  | 
						
							| 2 |  | catidcl.h |  | 
						
							| 3 |  | catidcl.i |  | 
						
							| 4 |  | catidcl.c |  | 
						
							| 5 |  | catidcl.x |  | 
						
							| 6 |  | catlid.o |  | 
						
							| 7 |  | catlid.y |  | 
						
							| 8 |  | catlid.f |  | 
						
							| 9 |  | oveq2 |  | 
						
							| 10 |  | id |  | 
						
							| 11 | 9 10 | eqeq12d |  | 
						
							| 12 |  | oveq1 |  | 
						
							| 13 |  | opeq1 |  | 
						
							| 14 | 13 | oveq1d |  | 
						
							| 15 | 14 | oveqd |  | 
						
							| 16 | 15 | eqeq1d |  | 
						
							| 17 | 12 16 | raleqbidv |  | 
						
							| 18 |  | simpl |  | 
						
							| 19 | 18 | ralimi |  | 
						
							| 20 | 19 | a1i |  | 
						
							| 21 | 20 | ss2rabi |  | 
						
							| 22 | 1 2 6 4 3 7 | cidval |  | 
						
							| 23 | 1 2 6 4 7 | catideu |  | 
						
							| 24 |  | riotacl2 |  | 
						
							| 25 | 23 24 | syl |  | 
						
							| 26 | 22 25 | eqeltrd |  | 
						
							| 27 | 21 26 | sselid |  | 
						
							| 28 |  | oveq1 |  | 
						
							| 29 | 28 | eqeq1d |  | 
						
							| 30 | 29 | 2ralbidv |  | 
						
							| 31 | 30 | elrab |  | 
						
							| 32 | 31 | simprbi |  | 
						
							| 33 | 27 32 | syl |  | 
						
							| 34 | 17 33 5 | rspcdva |  | 
						
							| 35 | 11 34 8 | rspcdva |  |