Description: Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | catidcl.b | |
|
catidcl.h | |
||
catidcl.i | |
||
catidcl.c | |
||
catidcl.x | |
||
catlid.o | |
||
catlid.y | |
||
catlid.f | |
||
Assertion | catlid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catidcl.b | |
|
2 | catidcl.h | |
|
3 | catidcl.i | |
|
4 | catidcl.c | |
|
5 | catidcl.x | |
|
6 | catlid.o | |
|
7 | catlid.y | |
|
8 | catlid.f | |
|
9 | oveq2 | |
|
10 | id | |
|
11 | 9 10 | eqeq12d | |
12 | oveq1 | |
|
13 | opeq1 | |
|
14 | 13 | oveq1d | |
15 | 14 | oveqd | |
16 | 15 | eqeq1d | |
17 | 12 16 | raleqbidv | |
18 | simpl | |
|
19 | 18 | ralimi | |
20 | 19 | a1i | |
21 | 20 | ss2rabi | |
22 | 1 2 6 4 3 7 | cidval | |
23 | 1 2 6 4 7 | catideu | |
24 | riotacl2 | |
|
25 | 23 24 | syl | |
26 | 22 25 | eqeltrd | |
27 | 21 26 | sselid | |
28 | oveq1 | |
|
29 | 28 | eqeq1d | |
30 | 29 | 2ralbidv | |
31 | 30 | elrab | |
32 | 31 | simprbi | |
33 | 27 32 | syl | |
34 | 17 33 5 | rspcdva | |
35 | 11 34 8 | rspcdva | |