Metamath Proof Explorer


Theorem catlid

Description: Left identity property of an identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses catidcl.b B=BaseC
catidcl.h H=HomC
catidcl.i 1˙=IdC
catidcl.c φCCat
catidcl.x φXB
catlid.o ·˙=compC
catlid.y φYB
catlid.f φFXHY
Assertion catlid φ1˙YXY·˙YF=F

Proof

Step Hyp Ref Expression
1 catidcl.b B=BaseC
2 catidcl.h H=HomC
3 catidcl.i 1˙=IdC
4 catidcl.c φCCat
5 catidcl.x φXB
6 catlid.o ·˙=compC
7 catlid.y φYB
8 catlid.f φFXHY
9 oveq2 f=F1˙YXY·˙Yf=1˙YXY·˙YF
10 id f=Ff=F
11 9 10 eqeq12d f=F1˙YXY·˙Yf=f1˙YXY·˙YF=F
12 oveq1 x=XxHY=XHY
13 opeq1 x=XxY=XY
14 13 oveq1d x=XxY·˙Y=XY·˙Y
15 14 oveqd x=X1˙YxY·˙Yf=1˙YXY·˙Yf
16 15 eqeq1d x=X1˙YxY·˙Yf=f1˙YXY·˙Yf=f
17 12 16 raleqbidv x=XfxHY1˙YxY·˙Yf=ffXHY1˙YXY·˙Yf=f
18 simpl fxHYgxY·˙Yf=ffYHxfYY·˙xg=ffxHYgxY·˙Yf=f
19 18 ralimi xBfxHYgxY·˙Yf=ffYHxfYY·˙xg=fxBfxHYgxY·˙Yf=f
20 19 a1i gYHYxBfxHYgxY·˙Yf=ffYHxfYY·˙xg=fxBfxHYgxY·˙Yf=f
21 20 ss2rabi gYHY|xBfxHYgxY·˙Yf=ffYHxfYY·˙xg=fgYHY|xBfxHYgxY·˙Yf=f
22 1 2 6 4 3 7 cidval φ1˙Y=ιgYHY|xBfxHYgxY·˙Yf=ffYHxfYY·˙xg=f
23 1 2 6 4 7 catideu φ∃!gYHYxBfxHYgxY·˙Yf=ffYHxfYY·˙xg=f
24 riotacl2 ∃!gYHYxBfxHYgxY·˙Yf=ffYHxfYY·˙xg=fιgYHY|xBfxHYgxY·˙Yf=ffYHxfYY·˙xg=fgYHY|xBfxHYgxY·˙Yf=ffYHxfYY·˙xg=f
25 23 24 syl φιgYHY|xBfxHYgxY·˙Yf=ffYHxfYY·˙xg=fgYHY|xBfxHYgxY·˙Yf=ffYHxfYY·˙xg=f
26 22 25 eqeltrd φ1˙YgYHY|xBfxHYgxY·˙Yf=ffYHxfYY·˙xg=f
27 21 26 sselid φ1˙YgYHY|xBfxHYgxY·˙Yf=f
28 oveq1 g=1˙YgxY·˙Yf=1˙YxY·˙Yf
29 28 eqeq1d g=1˙YgxY·˙Yf=f1˙YxY·˙Yf=f
30 29 2ralbidv g=1˙YxBfxHYgxY·˙Yf=fxBfxHY1˙YxY·˙Yf=f
31 30 elrab 1˙YgYHY|xBfxHYgxY·˙Yf=f1˙YYHYxBfxHY1˙YxY·˙Yf=f
32 31 simprbi 1˙YgYHY|xBfxHYgxY·˙Yf=fxBfxHY1˙YxY·˙Yf=f
33 27 32 syl φxBfxHY1˙YxY·˙Yf=f
34 17 33 5 rspcdva φfXHY1˙YXY·˙Yf=f
35 11 34 8 rspcdva φ1˙YXY·˙YF=F