Metamath Proof Explorer


Theorem catprs

Description: A preorder can be extracted from a category. See catprs2 for more details. (Contributed by Zhi Wang, 18-Sep-2024)

Ref Expression
Hypotheses catprs.1 φxByBx˙yxHy
catprs.b φB=BaseC
catprs.h φH=HomC
catprs.c φCCat
Assertion catprs φXBYBZBX˙XX˙YY˙ZX˙Z

Proof

Step Hyp Ref Expression
1 catprs.1 φxByBx˙yxHy
2 catprs.b φB=BaseC
3 catprs.h φH=HomC
4 catprs.c φCCat
5 eqid BaseC=BaseC
6 eqid HomC=HomC
7 eqid IdC=IdC
8 4 adantr φXBYBZBCCat
9 simpr1 φXBYBZBXB
10 2 adantr φXBYBZBB=BaseC
11 9 10 eleqtrd φXBYBZBXBaseC
12 5 6 7 8 11 catidcl φXBYBZBIdCXXHomCX
13 3 adantr φXBYBZBH=HomC
14 13 oveqd φXBYBZBXHX=XHomCX
15 12 14 eleqtrrd φXBYBZBIdCXXHX
16 15 ne0d φXBYBZBXHX
17 1 adantr φXBYBZBxByBx˙yxHy
18 17 9 9 catprslem φXBYBZBX˙XXHX
19 16 18 mpbird φXBYBZBX˙X
20 3 ad2antrr φXBYBZBX˙YY˙ZH=HomC
21 20 oveqd φXBYBZBX˙YY˙ZXHZ=XHomCZ
22 2 eleq2d φXBXBaseC
23 2 eleq2d φYBYBaseC
24 2 eleq2d φZBZBaseC
25 22 23 24 3anbi123d φXBYBZBXBaseCYBaseCZBaseC
26 25 pm5.32i φXBYBZBφXBaseCYBaseCZBaseC
27 eqid compC=compC
28 4 ad2antrr φXBaseCYBaseCZBaseCX˙YY˙ZCCat
29 simplr1 φXBaseCYBaseCZBaseCX˙YY˙ZXBaseC
30 simplr2 φXBaseCYBaseCZBaseCX˙YY˙ZYBaseC
31 simplr3 φXBaseCYBaseCZBaseCX˙YY˙ZZBaseC
32 20 oveqd φXBYBZBX˙YY˙ZXHY=XHomCY
33 simpr2 φXBYBZBYB
34 17 9 33 catprslem φXBYBZBX˙YXHY
35 34 biimpa φXBYBZBX˙YXHY
36 35 adantrr φXBYBZBX˙YY˙ZXHY
37 32 36 eqnetrrd φXBYBZBX˙YY˙ZXHomCY
38 26 37 sylanbr φXBaseCYBaseCZBaseCX˙YY˙ZXHomCY
39 20 oveqd φXBYBZBX˙YY˙ZYHZ=YHomCZ
40 simpr3 φXBYBZBZB
41 17 33 40 catprslem φXBYBZBY˙ZYHZ
42 41 biimpa φXBYBZBY˙ZYHZ
43 42 adantrl φXBYBZBX˙YY˙ZYHZ
44 39 43 eqnetrrd φXBYBZBX˙YY˙ZYHomCZ
45 26 44 sylanbr φXBaseCYBaseCZBaseCX˙YY˙ZYHomCZ
46 5 6 27 28 29 30 31 38 45 catcone0 φXBaseCYBaseCZBaseCX˙YY˙ZXHomCZ
47 26 46 sylanb φXBYBZBX˙YY˙ZXHomCZ
48 21 47 eqnetrd φXBYBZBX˙YY˙ZXHZ
49 17 9 40 catprslem φXBYBZBX˙ZXHZ
50 49 adantr φXBYBZBX˙YY˙ZX˙ZXHZ
51 48 50 mpbird φXBYBZBX˙YY˙ZX˙Z
52 51 ex φXBYBZBX˙YY˙ZX˙Z
53 19 52 jca φXBYBZBX˙XX˙YY˙ZX˙Z