Description: A preorder can be extracted from a category. See catprs2 for more details. (Contributed by Zhi Wang, 18-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | catprs.1 | |
|
catprs.b | |
||
catprs.h | |
||
catprs.c | |
||
Assertion | catprs | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catprs.1 | |
|
2 | catprs.b | |
|
3 | catprs.h | |
|
4 | catprs.c | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | 4 | adantr | |
9 | simpr1 | |
|
10 | 2 | adantr | |
11 | 9 10 | eleqtrd | |
12 | 5 6 7 8 11 | catidcl | |
13 | 3 | adantr | |
14 | 13 | oveqd | |
15 | 12 14 | eleqtrrd | |
16 | 15 | ne0d | |
17 | 1 | adantr | |
18 | 17 9 9 | catprslem | |
19 | 16 18 | mpbird | |
20 | 3 | ad2antrr | |
21 | 20 | oveqd | |
22 | 2 | eleq2d | |
23 | 2 | eleq2d | |
24 | 2 | eleq2d | |
25 | 22 23 24 | 3anbi123d | |
26 | 25 | pm5.32i | |
27 | eqid | |
|
28 | 4 | ad2antrr | |
29 | simplr1 | |
|
30 | simplr2 | |
|
31 | simplr3 | |
|
32 | 20 | oveqd | |
33 | simpr2 | |
|
34 | 17 9 33 | catprslem | |
35 | 34 | biimpa | |
36 | 35 | adantrr | |
37 | 32 36 | eqnetrrd | |
38 | 26 37 | sylanbr | |
39 | 20 | oveqd | |
40 | simpr3 | |
|
41 | 17 33 40 | catprslem | |
42 | 41 | biimpa | |
43 | 42 | adantrl | |
44 | 39 43 | eqnetrrd | |
45 | 26 44 | sylanbr | |
46 | 5 6 27 28 29 30 31 38 45 | catcone0 | |
47 | 26 46 | sylanb | |
48 | 21 47 | eqnetrd | |
49 | 17 9 40 | catprslem | |
50 | 49 | adantr | |
51 | 48 50 | mpbird | |
52 | 51 | ex | |
53 | 19 52 | jca | |