Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Gino Giotto
Change bound variables.
Change bound variables, deduction versions.
cbvitgdavw
Next ⟩
cbvditgdavw
Metamath Proof Explorer
Ascii
Unicode
Theorem
cbvitgdavw
Description:
Change bound variable in an integral. Deduction form.
(Contributed by
GG
, 14-Aug-2025)
Ref
Expression
Hypothesis
cbvitgdavw.1
⊢
φ
∧
x
=
y
→
B
=
C
Assertion
cbvitgdavw
⊢
φ
→
∫
A
B
d
x
=
∫
A
C
d
y
Proof
Step
Hyp
Ref
Expression
1
cbvitgdavw.1
⊢
φ
∧
x
=
y
→
B
=
C
2
1
fvoveq1d
⊢
φ
∧
x
=
y
→
ℜ
⁡
B
i
t
=
ℜ
⁡
C
i
t
3
eleq1w
⊢
x
=
y
→
x
∈
A
↔
y
∈
A
4
3
adantl
⊢
φ
∧
x
=
y
→
x
∈
A
↔
y
∈
A
5
4
anbi1d
⊢
φ
∧
x
=
y
→
x
∈
A
∧
0
≤
v
↔
y
∈
A
∧
0
≤
v
6
5
ifbid
⊢
φ
∧
x
=
y
→
if
x
∈
A
∧
0
≤
v
v
0
=
if
y
∈
A
∧
0
≤
v
v
0
7
2
6
csbeq12dv
⊢
φ
∧
x
=
y
→
⦋
ℜ
⁡
B
i
t
/
v
⦌
if
x
∈
A
∧
0
≤
v
v
0
=
⦋
ℜ
⁡
C
i
t
/
v
⦌
if
y
∈
A
∧
0
≤
v
v
0
8
7
cbvmptdavw
⊢
φ
→
x
∈
ℝ
⟼
⦋
ℜ
⁡
B
i
t
/
v
⦌
if
x
∈
A
∧
0
≤
v
v
0
=
y
∈
ℝ
⟼
⦋
ℜ
⁡
C
i
t
/
v
⦌
if
y
∈
A
∧
0
≤
v
v
0
9
8
fveq2d
⊢
φ
→
∫
2
⁡
x
∈
ℝ
⟼
⦋
ℜ
⁡
B
i
t
/
v
⦌
if
x
∈
A
∧
0
≤
v
v
0
=
∫
2
⁡
y
∈
ℝ
⟼
⦋
ℜ
⁡
C
i
t
/
v
⦌
if
y
∈
A
∧
0
≤
v
v
0
10
9
oveq2d
⊢
φ
→
i
t
⁢
∫
2
⁡
x
∈
ℝ
⟼
⦋
ℜ
⁡
B
i
t
/
v
⦌
if
x
∈
A
∧
0
≤
v
v
0
=
i
t
⁢
∫
2
⁡
y
∈
ℝ
⟼
⦋
ℜ
⁡
C
i
t
/
v
⦌
if
y
∈
A
∧
0
≤
v
v
0
11
10
sumeq2sdv
⊢
φ
→
∑
t
=
0
3
i
t
⁢
∫
2
⁡
x
∈
ℝ
⟼
⦋
ℜ
⁡
B
i
t
/
v
⦌
if
x
∈
A
∧
0
≤
v
v
0
=
∑
t
=
0
3
i
t
⁢
∫
2
⁡
y
∈
ℝ
⟼
⦋
ℜ
⁡
C
i
t
/
v
⦌
if
y
∈
A
∧
0
≤
v
v
0
12
df-itg
⊢
∫
A
B
d
x
=
∑
t
=
0
3
i
t
⁢
∫
2
⁡
x
∈
ℝ
⟼
⦋
ℜ
⁡
B
i
t
/
v
⦌
if
x
∈
A
∧
0
≤
v
v
0
13
df-itg
⊢
∫
A
C
d
y
=
∑
t
=
0
3
i
t
⁢
∫
2
⁡
y
∈
ℝ
⟼
⦋
ℜ
⁡
C
i
t
/
v
⦌
if
y
∈
A
∧
0
≤
v
v
0
14
11
12
13
3eqtr4g
⊢
φ
→
∫
A
B
d
x
=
∫
A
C
d
y