Metamath Proof Explorer


Theorem ccat2s1fvwALT

Description: Alternate proof of ccat2s1fvw using words of length 2, see df-s2 . A symbol of the concatenation of a word with two single symbols corresponding to the symbol of the word. (Contributed by AV, 22-Sep-2018) (Proof shortened by Mario Carneiro/AV, 21-Oct-2018) (Revised by AV, 28-Jan-2024) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion ccat2s1fvwALT WWordVI0I<WW++⟨“X”⟩++⟨“Y”⟩I=WI

Proof

Step Hyp Ref Expression
1 ccatw2s1ccatws2 WWordVW++⟨“X”⟩++⟨“Y”⟩=W++⟨“XY”⟩
2 1 fveq1d WWordVW++⟨“X”⟩++⟨“Y”⟩I=W++⟨“XY”⟩I
3 2 3ad2ant1 WWordVI0I<WW++⟨“X”⟩++⟨“Y”⟩I=W++⟨“XY”⟩I
4 simp1 WWordVI0I<WWWordV
5 s2cli ⟨“XY”⟩WordV
6 5 a1i WWordVI0I<W⟨“XY”⟩WordV
7 simp2 WWordVI0I<WI0
8 lencl WWordVW0
9 8 nn0zd WWordVW
10 9 3ad2ant1 WWordVI0I<WW
11 simp3 WWordVI0I<WI<W
12 elfzo0z I0..^WI0WI<W
13 7 10 11 12 syl3anbrc WWordVI0I<WI0..^W
14 ccatval1 WWordV⟨“XY”⟩WordVI0..^WW++⟨“XY”⟩I=WI
15 4 6 13 14 syl3anc WWordVI0I<WW++⟨“XY”⟩I=WI
16 3 15 eqtrd WWordVI0I<WW++⟨“X”⟩++⟨“Y”⟩I=WI