Metamath Proof Explorer


Theorem ccats1pfxeq

Description: The last symbol of a word concatenated with the word with the last symbol removed results in the word itself. (Contributed by Alexander van der Vekens, 24-Oct-2018) (Revised by AV, 9-May-2020)

Ref Expression
Assertion ccats1pfxeq WWordVUWordVU=W+1W=UprefixWU=W++⟨“lastSU”⟩

Proof

Step Hyp Ref Expression
1 oveq1 W=UprefixWW++⟨“lastSU”⟩=UprefixW++⟨“lastSU”⟩
2 1 adantl WWordVUWordVU=W+1W=UprefixWW++⟨“lastSU”⟩=UprefixW++⟨“lastSU”⟩
3 lencl WWordVW0
4 3 nn0cnd WWordVW
5 pncan1 WW+1-1=W
6 4 5 syl WWordVW+1-1=W
7 6 eqcomd WWordVW=W+1-1
8 7 3ad2ant1 WWordVUWordVU=W+1W=W+1-1
9 oveq1 U=W+1U1=W+1-1
10 9 eqcomd U=W+1W+1-1=U1
11 10 3ad2ant3 WWordVUWordVU=W+1W+1-1=U1
12 8 11 eqtrd WWordVUWordVU=W+1W=U1
13 12 oveq2d WWordVUWordVU=W+1UprefixW=UprefixU1
14 13 oveq1d WWordVUWordVU=W+1UprefixW++⟨“lastSU”⟩=UprefixU1++⟨“lastSU”⟩
15 simp2 WWordVUWordVU=W+1UWordV
16 nn0p1gt0 W00<W+1
17 3 16 syl WWordV0<W+1
18 17 3ad2ant1 WWordVUWordVU=W+10<W+1
19 breq2 U=W+10<U0<W+1
20 19 3ad2ant3 WWordVUWordVU=W+10<U0<W+1
21 18 20 mpbird WWordVUWordVU=W+10<U
22 hashneq0 UWordV0<UU
23 22 3ad2ant2 WWordVUWordVU=W+10<UU
24 21 23 mpbid WWordVUWordVU=W+1U
25 pfxlswccat UWordVUUprefixU1++⟨“lastSU”⟩=U
26 15 24 25 syl2anc WWordVUWordVU=W+1UprefixU1++⟨“lastSU”⟩=U
27 14 26 eqtrd WWordVUWordVU=W+1UprefixW++⟨“lastSU”⟩=U
28 27 adantr WWordVUWordVU=W+1W=UprefixWUprefixW++⟨“lastSU”⟩=U
29 2 28 eqtr2d WWordVUWordVU=W+1W=UprefixWU=W++⟨“lastSU”⟩
30 29 ex WWordVUWordVU=W+1W=UprefixWU=W++⟨“lastSU”⟩