Metamath Proof Explorer


Theorem cdj3lem3

Description: Lemma for cdj3i . Value of the second-component function T . (Contributed by NM, 23-May-2005) (New usage is discouraged.)

Ref Expression
Hypotheses cdj3lem2.1 AS
cdj3lem2.2 BS
cdj3lem3.3 T=xA+BιwB|zAx=z+w
Assertion cdj3lem3 CADBAB=0TC+D=D

Proof

Step Hyp Ref Expression
1 cdj3lem2.1 AS
2 cdj3lem2.2 BS
3 cdj3lem3.3 T=xA+BιwB|zAx=z+w
4 incom AB=BA
5 4 eqeq1i AB=0BA=0
6 2 sheli DBD
7 1 sheli CAC
8 ax-hvcom DCD+C=C+D
9 6 7 8 syl2an DBCAD+C=C+D
10 9 fveq2d DBCATD+C=TC+D
11 10 3adant3 DBCABA=0TD+C=TC+D
12 2 1 shscomi B+A=A+B
13 2 sheli wBw
14 1 sheli zAz
15 ax-hvcom wzw+z=z+w
16 13 14 15 syl2an wBzAw+z=z+w
17 16 eqeq2d wBzAx=w+zx=z+w
18 17 rexbidva wBzAx=w+zzAx=z+w
19 18 riotabiia ιwB|zAx=w+z=ιwB|zAx=z+w
20 12 19 mpteq12i xB+AιwB|zAx=w+z=xA+BιwB|zAx=z+w
21 3 20 eqtr4i T=xB+AιwB|zAx=w+z
22 2 1 21 cdj3lem2 DBCABA=0TD+C=D
23 11 22 eqtr3d DBCABA=0TC+D=D
24 5 23 syl3an3b DBCAAB=0TC+D=D
25 24 3com12 CADBAB=0TC+D=D