Step |
Hyp |
Ref |
Expression |
1 |
|
cdlema1.b |
|
2 |
|
cdlema1.l |
|
3 |
|
cdlema1.j |
|
4 |
|
cdlema1.m |
|
5 |
|
cdlema1.a |
|
6 |
|
cdlema1.n |
|
7 |
|
cdlema1.f |
|
8 |
|
simp11 |
|
9 |
8
|
hllatd |
|
10 |
|
simp12 |
|
11 |
|
simp23 |
|
12 |
1 5
|
atbase |
|
13 |
11 12
|
syl |
|
14 |
1 3
|
latjcl |
|
15 |
9 10 13 14
|
syl3anc |
|
16 |
|
simp13 |
|
17 |
1 3
|
latjcl |
|
18 |
9 10 16 17
|
syl3anc |
|
19 |
1 2 3
|
latlej1 |
|
20 |
9 10 16 19
|
syl3anc |
|
21 |
|
simp21 |
|
22 |
1 5
|
atbase |
|
23 |
21 22
|
syl |
|
24 |
|
simp22 |
|
25 |
1 5
|
atbase |
|
26 |
24 25
|
syl |
|
27 |
1 3
|
latjcl |
|
28 |
9 23 26 27
|
syl3anc |
|
29 |
|
simp31r |
|
30 |
|
simp32l |
|
31 |
|
simp32r |
|
32 |
1 2 3
|
latjlej12 |
|
33 |
9 23 10 26 16 32
|
syl122anc |
|
34 |
30 31 33
|
mp2and |
|
35 |
1 2 9 13 28 18 29 34
|
lattrd |
|
36 |
1 2 3
|
latjle12 |
|
37 |
9 10 13 18 36
|
syl13anc |
|
38 |
20 35 37
|
mpbi2and |
|
39 |
1 2 3
|
latlej1 |
|
40 |
9 10 13 39
|
syl3anc |
|
41 |
|
simp331 |
|
42 |
|
simp332 |
|
43 |
|
simp333 |
|
44 |
1 2 4
|
latmle1 |
|
45 |
9 10 16 44
|
syl3anc |
|
46 |
|
breq1 |
|
47 |
45 46
|
syl5ibrcom |
|
48 |
47
|
necon3bd |
|
49 |
43 48
|
mpd |
|
50 |
1 2 4
|
latmle2 |
|
51 |
9 10 16 50
|
syl3anc |
|
52 |
1 2 3 5 6 7
|
lneq2at |
|
53 |
8 16 41 24 42 49 31 51 52
|
syl332anc |
|
54 |
1 3
|
latjcl |
|
55 |
9 23 13 54
|
syl3anc |
|
56 |
11 24 21
|
3jca |
|
57 |
|
simp31l |
|
58 |
8 56 57
|
3jca |
|
59 |
2 3 5
|
hlatexch1 |
|
60 |
58 29 59
|
sylc |
|
61 |
23 10 13
|
3jca |
|
62 |
9 61
|
jca |
|
63 |
1 2 3
|
latjlej1 |
|
64 |
62 30 63
|
sylc |
|
65 |
1 2 9 26 55 15 60 64
|
lattrd |
|
66 |
1 2 3 4
|
latmlej11 |
|
67 |
9 10 16 13 66
|
syl13anc |
|
68 |
1 4
|
latmcl |
|
69 |
9 10 16 68
|
syl3anc |
|
70 |
1 2 3
|
latjle12 |
|
71 |
9 26 69 15 70
|
syl13anc |
|
72 |
65 67 71
|
mpbi2and |
|
73 |
53 72
|
eqbrtrd |
|
74 |
1 2 3
|
latjle12 |
|
75 |
9 10 16 15 74
|
syl13anc |
|
76 |
40 73 75
|
mpbi2and |
|
77 |
1 2 9 15 18 38 76
|
latasymd |
|