Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 5-Nov-2012) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme0.l | |
|
cdleme0.j | |
||
cdleme0.m | |
||
cdleme0.a | |
||
cdleme0.h | |
||
cdleme0.u | |
||
Assertion | cdleme01N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme0.l | |
|
2 | cdleme0.j | |
|
3 | cdleme0.m | |
|
4 | cdleme0.a | |
|
5 | cdleme0.h | |
|
6 | cdleme0.u | |
|
7 | simp1l | |
|
8 | 7 | hllatd | |
9 | simp2ll | |
|
10 | simp2rl | |
|
11 | eqid | |
|
12 | 11 2 4 | hlatjcl | |
13 | 7 9 10 12 | syl3anc | |
14 | simp1r | |
|
15 | 11 5 | lhpbase | |
16 | 14 15 | syl | |
17 | 11 1 3 | latmle2 | |
18 | 8 13 16 17 | syl3anc | |
19 | 6 18 | eqbrtrid | |
20 | simp2lr | |
|
21 | nbrne2 | |
|
22 | 19 20 21 | syl2anc | |
23 | simp2rr | |
|
24 | nbrne2 | |
|
25 | 19 23 24 | syl2anc | |
26 | simp1 | |
|
27 | 1 2 3 4 5 6 | cdlemeulpq | |
28 | 26 9 10 27 | syl12anc | |
29 | 22 25 28 | 3jca | |
30 | 29 19 | jca | |