Metamath Proof Explorer


Theorem cdleme01N

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 5-Nov-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme0.l ˙=K
cdleme0.j ˙=joinK
cdleme0.m ˙=meetK
cdleme0.a A=AtomsK
cdleme0.h H=LHypK
cdleme0.u U=P˙Q˙W
Assertion cdleme01N KHLWHPA¬P˙WQA¬Q˙WPQUPUQU˙P˙QU˙W

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙=K
2 cdleme0.j ˙=joinK
3 cdleme0.m ˙=meetK
4 cdleme0.a A=AtomsK
5 cdleme0.h H=LHypK
6 cdleme0.u U=P˙Q˙W
7 simp1l KHLWHPA¬P˙WQA¬Q˙WPQKHL
8 7 hllatd KHLWHPA¬P˙WQA¬Q˙WPQKLat
9 simp2ll KHLWHPA¬P˙WQA¬Q˙WPQPA
10 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQQA
11 eqid BaseK=BaseK
12 11 2 4 hlatjcl KHLPAQAP˙QBaseK
13 7 9 10 12 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQP˙QBaseK
14 simp1r KHLWHPA¬P˙WQA¬Q˙WPQWH
15 11 5 lhpbase WHWBaseK
16 14 15 syl KHLWHPA¬P˙WQA¬Q˙WPQWBaseK
17 11 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
18 8 13 16 17 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQP˙Q˙W˙W
19 6 18 eqbrtrid KHLWHPA¬P˙WQA¬Q˙WPQU˙W
20 simp2lr KHLWHPA¬P˙WQA¬Q˙WPQ¬P˙W
21 nbrne2 U˙W¬P˙WUP
22 19 20 21 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQUP
23 simp2rr KHLWHPA¬P˙WQA¬Q˙WPQ¬Q˙W
24 nbrne2 U˙W¬Q˙WUQ
25 19 23 24 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQUQ
26 simp1 KHLWHPA¬P˙WQA¬Q˙WPQKHLWH
27 1 2 3 4 5 6 cdlemeulpq KHLWHPAQAU˙P˙Q
28 26 9 10 27 syl12anc KHLWHPA¬P˙WQA¬Q˙WPQU˙P˙Q
29 22 25 28 3jca KHLWHPA¬P˙WQA¬Q˙WPQUPUQU˙P˙Q
30 29 19 jca KHLWHPA¬P˙WQA¬Q˙WPQUPUQU˙P˙QU˙W