Metamath Proof Explorer


Theorem cdleme0b

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 13-Jun-2012)

Ref Expression
Hypotheses cdleme0.l ˙=K
cdleme0.j ˙=joinK
cdleme0.m ˙=meetK
cdleme0.a A=AtomsK
cdleme0.h H=LHypK
cdleme0.u U=P˙Q˙W
Assertion cdleme0b KHLWHPA¬P˙WQAUP

Proof

Step Hyp Ref Expression
1 cdleme0.l ˙=K
2 cdleme0.j ˙=joinK
3 cdleme0.m ˙=meetK
4 cdleme0.a A=AtomsK
5 cdleme0.h H=LHypK
6 cdleme0.u U=P˙Q˙W
7 simp1l KHLWHPA¬P˙WQAKHL
8 7 hllatd KHLWHPA¬P˙WQAKLat
9 simp2l KHLWHPA¬P˙WQAPA
10 eqid BaseK=BaseK
11 10 4 atbase PAPBaseK
12 9 11 syl KHLWHPA¬P˙WQAPBaseK
13 10 4 atbase QAQBaseK
14 13 3ad2ant3 KHLWHPA¬P˙WQAQBaseK
15 10 2 latjcl KLatPBaseKQBaseKP˙QBaseK
16 8 12 14 15 syl3anc KHLWHPA¬P˙WQAP˙QBaseK
17 simp1r KHLWHPA¬P˙WQAWH
18 10 5 lhpbase WHWBaseK
19 17 18 syl KHLWHPA¬P˙WQAWBaseK
20 10 1 3 latmle2 KLatP˙QBaseKWBaseKP˙Q˙W˙W
21 8 16 19 20 syl3anc KHLWHPA¬P˙WQAP˙Q˙W˙W
22 6 21 eqbrtrid KHLWHPA¬P˙WQAU˙W
23 simp2r KHLWHPA¬P˙WQA¬P˙W
24 nbrne2 U˙W¬P˙WUP
25 22 23 24 syl2anc KHLWHPA¬P˙WQAUP