Metamath Proof Explorer


Theorem cdleme22aa

Description: Part of proof of Lemma E in Crawley p. 113, 3rd paragraph, 3rd line on p. 115. Show that t \/ v = p \/ q implies v = u. (Contributed by NM, 2-Dec-2012)

Ref Expression
Hypotheses cdleme22.l ˙=K
cdleme22.j ˙=joinK
cdleme22.m ˙=meetK
cdleme22.a A=AtomsK
cdleme22.h H=LHypK
cdleme22.u U=P˙Q˙W
Assertion cdleme22aa KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QV=U

Proof

Step Hyp Ref Expression
1 cdleme22.l ˙=K
2 cdleme22.j ˙=joinK
3 cdleme22.m ˙=meetK
4 cdleme22.a A=AtomsK
5 cdleme22.h H=LHypK
6 cdleme22.u U=P˙Q˙W
7 simp33 KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QV˙P˙Q
8 simp32 KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QV˙W
9 simp1l KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QKHL
10 9 hllatd KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QKLat
11 simp31 KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QVA
12 eqid BaseK=BaseK
13 12 4 atbase VAVBaseK
14 11 13 syl KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QVBaseK
15 simp21l KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QPA
16 simp22 KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QQA
17 12 2 4 hlatjcl KHLPAQAP˙QBaseK
18 9 15 16 17 syl3anc KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QP˙QBaseK
19 simp1r KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QWH
20 12 5 lhpbase WHWBaseK
21 19 20 syl KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QWBaseK
22 12 1 3 latlem12 KLatVBaseKP˙QBaseKWBaseKV˙P˙QV˙WV˙P˙Q˙W
23 10 14 18 21 22 syl13anc KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QV˙P˙QV˙WV˙P˙Q˙W
24 7 8 23 mpbi2and KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QV˙P˙Q˙W
25 24 6 breqtrrdi KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QV˙U
26 hlatl KHLKAtLat
27 9 26 syl KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QKAtLat
28 simp21r KHLWHPA¬P˙WQAPQVAV˙WV˙P˙Q¬P˙W
29 simp23 KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QPQ
30 1 2 3 4 5 6 cdleme0a KHLWHPA¬P˙WQAPQUA
31 9 19 15 28 16 29 30 syl222anc KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QUA
32 1 4 atcmp KAtLatVAUAV˙UV=U
33 27 11 31 32 syl3anc KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QV˙UV=U
34 25 33 mpbid KHLWHPA¬P˙WQAPQVAV˙WV˙P˙QV=U