Metamath Proof Explorer


Theorem cdleme31sn2

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 26-Feb-2013)

Ref Expression
Hypotheses cdleme32sn2.d D=s˙U˙Q˙P˙s˙W
cdleme31sn2.n N=ifs˙P˙QID
cdleme31sn2.c C=R˙U˙Q˙P˙R˙W
Assertion cdleme31sn2 RA¬R˙P˙QR/sN=C

Proof

Step Hyp Ref Expression
1 cdleme32sn2.d D=s˙U˙Q˙P˙s˙W
2 cdleme31sn2.n N=ifs˙P˙QID
3 cdleme31sn2.c C=R˙U˙Q˙P˙R˙W
4 eqid ifR˙P˙QR/sIR/sD=ifR˙P˙QR/sIR/sD
5 2 4 cdleme31sn RAR/sN=ifR˙P˙QR/sIR/sD
6 5 adantr RA¬R˙P˙QR/sN=ifR˙P˙QR/sIR/sD
7 iffalse ¬R˙P˙QifR˙P˙QR/sIR/sD=R/sD
8 1 csbeq2i R/sD=R/ss˙U˙Q˙P˙s˙W
9 7 8 eqtrdi ¬R˙P˙QifR˙P˙QR/sIR/sD=R/ss˙U˙Q˙P˙s˙W
10 nfcvd RA_sR˙U˙Q˙P˙R˙W
11 oveq1 s=Rs˙U=R˙U
12 oveq2 s=RP˙s=P˙R
13 12 oveq1d s=RP˙s˙W=P˙R˙W
14 13 oveq2d s=RQ˙P˙s˙W=Q˙P˙R˙W
15 11 14 oveq12d s=Rs˙U˙Q˙P˙s˙W=R˙U˙Q˙P˙R˙W
16 10 15 csbiegf RAR/ss˙U˙Q˙P˙s˙W=R˙U˙Q˙P˙R˙W
17 9 16 sylan9eqr RA¬R˙P˙QifR˙P˙QR/sIR/sD=R˙U˙Q˙P˙R˙W
18 6 17 eqtrd RA¬R˙P˙QR/sN=R˙U˙Q˙P˙R˙W
19 18 3 eqtr4di RA¬R˙P˙QR/sN=C