Metamath Proof Explorer


Theorem cdleme32c

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 19-Feb-2013)

Ref Expression
Hypotheses cdleme32.b B=BaseK
cdleme32.l ˙=K
cdleme32.j ˙=joinK
cdleme32.m ˙=meetK
cdleme32.a A=AtomsK
cdleme32.h H=LHypK
cdleme32.u U=P˙Q˙W
cdleme32.c C=s˙U˙Q˙P˙s˙W
cdleme32.d D=t˙U˙Q˙P˙t˙W
cdleme32.e E=P˙Q˙D˙s˙t˙W
cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
cdleme32.n N=ifs˙P˙QIC
cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme32.f F=xBifPQ¬x˙WOx
Assertion cdleme32c KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YFX˙FY

Proof

Step Hyp Ref Expression
1 cdleme32.b B=BaseK
2 cdleme32.l ˙=K
3 cdleme32.j ˙=joinK
4 cdleme32.m ˙=meetK
5 cdleme32.a A=AtomsK
6 cdleme32.h H=LHypK
7 cdleme32.u U=P˙Q˙W
8 cdleme32.c C=s˙U˙Q˙P˙s˙W
9 cdleme32.d D=t˙U˙Q˙P˙t˙W
10 cdleme32.e E=P˙Q˙D˙s˙t˙W
11 cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
12 cdleme32.n N=ifs˙P˙QIC
13 cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme32.f F=xBifPQ¬x˙WOx
15 simp33 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YX˙Y
16 simp11l KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YKHL
17 16 hllatd KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YKLat
18 simp21 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YXB
19 simp22 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YYB
20 simp11r KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YWH
21 1 6 lhpbase WHWB
22 20 21 syl KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YWB
23 1 2 4 latmlem1 KLatXBYBWBX˙YX˙W˙Y˙W
24 17 18 19 22 23 syl13anc KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YX˙YX˙W˙Y˙W
25 15 24 mpd KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YX˙W˙Y˙W
26 1 4 latmcl KLatXBWBX˙WB
27 17 18 22 26 syl3anc KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YX˙WB
28 1 4 latmcl KLatYBWBY˙WB
29 17 19 22 28 syl3anc KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YY˙WB
30 simp12 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YPA¬P˙W
31 simp13 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YQA¬Q˙W
32 simp31 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YsA¬s˙W
33 simp23l KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YPQ
34 1 2 3 4 5 6 7 8 9 10 11 12 cdleme27cl KHLWHPA¬P˙WQA¬Q˙WsA¬s˙WPQNB
35 16 20 30 31 32 33 34 syl222anc KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YNB
36 1 2 3 latjlej2 KLatX˙WBY˙WBNBX˙W˙Y˙WN˙X˙W˙N˙Y˙W
37 17 27 29 35 36 syl13anc KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YX˙W˙Y˙WN˙X˙W˙N˙Y˙W
38 25 37 mpd KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YN˙X˙W˙N˙Y˙W
39 simp1 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YKHLWHPA¬P˙WQA¬Q˙W
40 simp23 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YPQ¬X˙W
41 simp32 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙Ys˙X˙W=X
42 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32a KHLWHPA¬P˙WQA¬Q˙WXBPQ¬X˙WsA¬s˙Ws˙X˙W=XFX=N˙X˙W
43 39 18 40 32 41 42 syl122anc KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YFX=N˙X˙W
44 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32b KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YFY=N˙Y˙W
45 38 43 44 3brtr4d KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YFX˙FY