Metamath Proof Explorer


Theorem cdleme42c

Description: Part of proof of Lemma E in Crawley p. 113. Match -. x .<_ W . (Contributed by NM, 6-Mar-2013)

Ref Expression
Hypotheses cdleme42.b B=BaseK
cdleme42.l ˙=K
cdleme42.j ˙=joinK
cdleme42.m ˙=meetK
cdleme42.a A=AtomsK
cdleme42.h H=LHypK
cdleme42.v V=R˙S˙W
Assertion cdleme42c KHLWHRA¬R˙WSA¬S˙W¬R˙V˙W

Proof

Step Hyp Ref Expression
1 cdleme42.b B=BaseK
2 cdleme42.l ˙=K
3 cdleme42.j ˙=joinK
4 cdleme42.m ˙=meetK
5 cdleme42.a A=AtomsK
6 cdleme42.h H=LHypK
7 cdleme42.v V=R˙S˙W
8 simp2r KHLWHRA¬R˙WSA¬S˙W¬R˙W
9 simp1l KHLWHRA¬R˙WSA¬S˙WKHL
10 9 hllatd KHLWHRA¬R˙WSA¬S˙WKLat
11 simp2l KHLWHRA¬R˙WSA¬S˙WRA
12 1 5 atbase RARB
13 11 12 syl KHLWHRA¬R˙WSA¬S˙WRB
14 simp3l KHLWHRA¬R˙WSA¬S˙WSA
15 1 3 5 hlatjcl KHLRASAR˙SB
16 9 11 14 15 syl3anc KHLWHRA¬R˙WSA¬S˙WR˙SB
17 simp1r KHLWHRA¬R˙WSA¬S˙WWH
18 1 6 lhpbase WHWB
19 17 18 syl KHLWHRA¬R˙WSA¬S˙WWB
20 1 4 latmcl KLatR˙SBWBR˙S˙WB
21 10 16 19 20 syl3anc KHLWHRA¬R˙WSA¬S˙WR˙S˙WB
22 7 21 eqeltrid KHLWHRA¬R˙WSA¬S˙WVB
23 1 2 3 latjle12 KLatRBVBWBR˙WV˙WR˙V˙W
24 10 13 22 19 23 syl13anc KHLWHRA¬R˙WSA¬S˙WR˙WV˙WR˙V˙W
25 simpl R˙WV˙WR˙W
26 24 25 syl6bir KHLWHRA¬R˙WSA¬S˙WR˙V˙WR˙W
27 8 26 mtod KHLWHRA¬R˙WSA¬S˙W¬R˙V˙W