Metamath Proof Explorer


Theorem cdleme8

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. C represents s_1. In their notation, we prove p \/ s_1 = p \/ s. (Contributed by NM, 9-Jun-2012)

Ref Expression
Hypotheses cdleme8.l ˙=K
cdleme8.j ˙=joinK
cdleme8.m ˙=meetK
cdleme8.a A=AtomsK
cdleme8.h H=LHypK
cdleme8.4 C=P˙S˙W
Assertion cdleme8 KHLWHPA¬P˙WSAP˙C=P˙S

Proof

Step Hyp Ref Expression
1 cdleme8.l ˙=K
2 cdleme8.j ˙=joinK
3 cdleme8.m ˙=meetK
4 cdleme8.a A=AtomsK
5 cdleme8.h H=LHypK
6 cdleme8.4 C=P˙S˙W
7 6 oveq2i P˙C=P˙P˙S˙W
8 simp1l KHLWHPA¬P˙WSAKHL
9 simp2l KHLWHPA¬P˙WSAPA
10 8 hllatd KHLWHPA¬P˙WSAKLat
11 eqid BaseK=BaseK
12 11 4 atbase PAPBaseK
13 9 12 syl KHLWHPA¬P˙WSAPBaseK
14 11 4 atbase SASBaseK
15 14 3ad2ant3 KHLWHPA¬P˙WSASBaseK
16 11 2 latjcl KLatPBaseKSBaseKP˙SBaseK
17 10 13 15 16 syl3anc KHLWHPA¬P˙WSAP˙SBaseK
18 simp1r KHLWHPA¬P˙WSAWH
19 11 5 lhpbase WHWBaseK
20 18 19 syl KHLWHPA¬P˙WSAWBaseK
21 11 1 2 latlej1 KLatPBaseKSBaseKP˙P˙S
22 10 13 15 21 syl3anc KHLWHPA¬P˙WSAP˙P˙S
23 11 1 2 3 4 atmod3i1 KHLPAP˙SBaseKWBaseKP˙P˙SP˙P˙S˙W=P˙S˙P˙W
24 8 9 17 20 22 23 syl131anc KHLWHPA¬P˙WSAP˙P˙S˙W=P˙S˙P˙W
25 eqid 1.K=1.K
26 1 2 25 4 5 lhpjat2 KHLWHPA¬P˙WP˙W=1.K
27 26 3adant3 KHLWHPA¬P˙WSAP˙W=1.K
28 27 oveq2d KHLWHPA¬P˙WSAP˙S˙P˙W=P˙S˙1.K
29 hlol KHLKOL
30 8 29 syl KHLWHPA¬P˙WSAKOL
31 11 3 25 olm11 KOLP˙SBaseKP˙S˙1.K=P˙S
32 30 17 31 syl2anc KHLWHPA¬P˙WSAP˙S˙1.K=P˙S
33 24 28 32 3eqtrd KHLWHPA¬P˙WSAP˙P˙S˙W=P˙S
34 7 33 eqtrid KHLWHPA¬P˙WSAP˙C=P˙S