Metamath Proof Explorer


Theorem cdlemftr3

Description: Special case of cdlemf showing existence of non-identity translation with trace different from any 3 given lattice elements. (Contributed by NM, 24-Jul-2013)

Ref Expression
Hypotheses cdlemftr.b B=BaseK
cdlemftr.h H=LHypK
cdlemftr.t T=LTrnKW
cdlemftr.r R=trLKW
Assertion cdlemftr3 KHLWHfTfIBRfXRfYRfZ

Proof

Step Hyp Ref Expression
1 cdlemftr.b B=BaseK
2 cdlemftr.h H=LHypK
3 cdlemftr.t T=LTrnKW
4 cdlemftr.r R=trLKW
5 eqid K=K
6 eqid AtomsK=AtomsK
7 5 6 2 lhpexle3 KHLWHuAtomsKuKWuXuYuZ
8 df-rex uAtomsKuKWuXuYuZuuAtomsKuKWuXuYuZ
9 7 8 sylib KHLWHuuAtomsKuKWuXuYuZ
10 1 5 6 2 3 4 cdlemfnid KHLWHuAtomsKuKWfTRf=ufIB
11 10 adantrrr KHLWHuAtomsKuKWuXuYuZfTRf=ufIB
12 eqcom Rf=uu=Rf
13 12 anbi1i Rf=ufIBu=RffIB
14 13 rexbii fTRf=ufIBfTu=RffIB
15 11 14 sylib KHLWHuAtomsKuKWuXuYuZfTu=RffIB
16 simprrr KHLWHuAtomsKuKWuXuYuZuXuYuZ
17 15 16 jca KHLWHuAtomsKuKWuXuYuZfTu=RffIBuXuYuZ
18 17 ex KHLWHuAtomsKuKWuXuYuZfTu=RffIBuXuYuZ
19 18 eximdv KHLWHuuAtomsKuKWuXuYuZufTu=RffIBuXuYuZ
20 9 19 mpd KHLWHufTu=RffIBuXuYuZ
21 rexcom4 fTuu=RffIBuXuYuZufTu=RffIBuXuYuZ
22 anass u=RffIBuXuYuZu=RffIBuXuYuZ
23 22 exbii uu=RffIBuXuYuZuu=RffIBuXuYuZ
24 fvex RfV
25 neeq1 u=RfuXRfX
26 neeq1 u=RfuYRfY
27 neeq1 u=RfuZRfZ
28 25 26 27 3anbi123d u=RfuXuYuZRfXRfYRfZ
29 28 anbi2d u=RffIBuXuYuZfIBRfXRfYRfZ
30 24 29 ceqsexv uu=RffIBuXuYuZfIBRfXRfYRfZ
31 23 30 bitri uu=RffIBuXuYuZfIBRfXRfYRfZ
32 31 rexbii fTuu=RffIBuXuYuZfTfIBRfXRfYRfZ
33 r19.41v fTu=RffIBuXuYuZfTu=RffIBuXuYuZ
34 33 exbii ufTu=RffIBuXuYuZufTu=RffIBuXuYuZ
35 21 32 34 3bitr3ri ufTu=RffIBuXuYuZfTfIBRfXRfYRfZ
36 20 35 sylib KHLWHfTfIBRfXRfYRfZ