Metamath Proof Explorer


Theorem cdlemg12f

Description: TODO: FIX COMMENT. (Contributed by NM, 6-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg12f KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ˙P˙FGP˙W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKHL
9 8 hllatd KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKLat
10 simp12l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QPA
11 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKHLWH
12 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFT
13 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QGT
14 1 4 5 6 ltrncoat KHLWHFTGTPAFGPA
15 11 12 13 10 14 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGPA
16 eqid BaseK=BaseK
17 16 2 4 hlatjcl KHLPAFGPAP˙FGPBaseK
18 8 10 15 17 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGPBaseK
19 simp13l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QQA
20 1 4 5 6 ltrncoat KHLWHFTGTQAFGQA
21 11 12 13 19 20 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGQA
22 16 2 4 hlatjcl KHLQAFGQAQ˙FGQBaseK
23 8 19 21 22 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QQ˙FGQBaseK
24 16 1 3 latmle1 KLatP˙FGPBaseKQ˙FGQBaseKP˙FGP˙Q˙FGQ˙P˙FGP
25 9 18 23 24 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ˙P˙FGP
26 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QKHLWHPA¬P˙WQA¬Q˙W
27 simp2 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFTGTPQ
28 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QFGP˙FGQP˙Q
29 simp31l KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙Q¬RF˙P˙Q
30 simp31r KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙Q¬RG˙P˙Q
31 1 2 3 4 5 6 7 cdlemg10 KHLWHPA¬P˙WQA¬Q˙WFTGTPQFGP˙FGQP˙Q¬RF˙P˙Q¬RG˙P˙QP˙FGP˙Q˙FGQ˙W
32 26 27 28 29 30 31 syl113anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ˙W
33 16 3 latmcl KLatP˙FGPBaseKQ˙FGQBaseKP˙FGP˙Q˙FGQBaseK
34 9 18 23 33 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQBaseK
35 simp11r KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QWH
36 16 5 lhpbase WHWBaseK
37 35 36 syl KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QWBaseK
38 16 1 3 latlem12 KLatP˙FGP˙Q˙FGQBaseKP˙FGPBaseKWBaseKP˙FGP˙Q˙FGQ˙P˙FGPP˙FGP˙Q˙FGQ˙WP˙FGP˙Q˙FGQ˙P˙FGP˙W
39 9 34 18 37 38 syl13anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ˙P˙FGPP˙FGP˙Q˙FGQ˙WP˙FGP˙Q˙FGQ˙P˙FGP˙W
40 25 32 39 mpbi2and KHLWHPA¬P˙WQA¬Q˙WFTGTPQ¬RF˙P˙Q¬RG˙P˙QRFRGFGP˙FGQP˙QP˙FGP˙Q˙FGQ˙P˙FGP˙W