Metamath Proof Explorer


Theorem cdlemg31a

Description: TODO: fix comment. (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
Assertion cdlemg31a KHLWHPAQAvAFTN˙P˙v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 simp1l KHLWHPAQAvAFTKHL
10 9 hllatd KHLWHPAQAvAFTKLat
11 simp2l KHLWHPAQAvAFTPA
12 simp3l KHLWHPAQAvAFTvA
13 eqid BaseK=BaseK
14 13 2 4 hlatjcl KHLPAvAP˙vBaseK
15 9 11 12 14 syl3anc KHLWHPAQAvAFTP˙vBaseK
16 simp2r KHLWHPAQAvAFTQA
17 13 4 atbase QAQBaseK
18 16 17 syl KHLWHPAQAvAFTQBaseK
19 simp1 KHLWHPAQAvAFTKHLWH
20 simp3r KHLWHPAQAvAFTFT
21 13 5 6 7 trlcl KHLWHFTRFBaseK
22 19 20 21 syl2anc KHLWHPAQAvAFTRFBaseK
23 13 2 latjcl KLatQBaseKRFBaseKQ˙RFBaseK
24 10 18 22 23 syl3anc KHLWHPAQAvAFTQ˙RFBaseK
25 13 1 3 latmle1 KLatP˙vBaseKQ˙RFBaseKP˙v˙Q˙RF˙P˙v
26 10 15 24 25 syl3anc KHLWHPAQAvAFTP˙v˙Q˙RF˙P˙v
27 8 26 eqbrtrid KHLWHPAQAvAFTN˙P˙v