Metamath Proof Explorer


Theorem cdlemg31b0a

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
Assertion cdlemg31b0a KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAN=0.K

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 simp1l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFKHL
10 simp21l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFPA
11 simp23l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFvA
12 simp22l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFQA
13 simp1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFKHLWH
14 simp3l KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFFT
15 eqid 0.K=0.K
16 15 4 5 6 7 trlator0 KHLWHFTRFARF=0.K
17 13 14 16 syl2anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFRFARF=0.K
18 simp22 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFQA¬Q˙W
19 1 5 6 7 trlle KHLWHFTRF˙W
20 13 14 19 syl2anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFRF˙W
21 17 20 jca KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFRFARF=0.KRF˙W
22 simp23 KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFvAv˙W
23 simp3r KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFvRF
24 23 necomd KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFRFv
25 1 2 15 4 5 lhp2at0ne KHLWHQA¬Q˙WPARFARF=0.KRF˙WvAv˙WRFvQ˙RFP˙v
26 13 18 10 21 22 24 25 syl321anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFQ˙RFP˙v
27 26 necomd KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFP˙vQ˙RF
28 2 3 15 4 2at0mat0 KHLPAvAQARFARF=0.KP˙vQ˙RFP˙v˙Q˙RFAP˙v˙Q˙RF=0.K
29 9 10 11 12 17 27 28 syl33anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFP˙v˙Q˙RFAP˙v˙Q˙RF=0.K
30 8 eleq1i NAP˙v˙Q˙RFA
31 8 eqeq1i N=0.KP˙v˙Q˙RF=0.K
32 30 31 orbi12i NAN=0.KP˙v˙Q˙RFAP˙v˙Q˙RF=0.K
33 29 32 sylibr KHLWHPA¬P˙WQA¬Q˙WvAv˙WFTvRFNAN=0.K