Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
|
2 |
|
cdlemg12.j |
|
3 |
|
cdlemg12.m |
|
4 |
|
cdlemg12.a |
|
5 |
|
cdlemg12.h |
|
6 |
|
cdlemg12.t |
|
7 |
|
cdlemg12b.r |
|
8 |
|
cdlemg31.n |
|
9 |
|
simp1l |
|
10 |
|
simp21l |
|
11 |
|
simp23l |
|
12 |
|
simp22l |
|
13 |
|
simp1 |
|
14 |
|
simp3l |
|
15 |
|
eqid |
|
16 |
15 4 5 6 7
|
trlator0 |
|
17 |
13 14 16
|
syl2anc |
|
18 |
|
simp22 |
|
19 |
1 5 6 7
|
trlle |
|
20 |
13 14 19
|
syl2anc |
|
21 |
17 20
|
jca |
|
22 |
|
simp23 |
|
23 |
|
simp3r |
|
24 |
23
|
necomd |
|
25 |
1 2 15 4 5
|
lhp2at0ne |
|
26 |
13 18 10 21 22 24 25
|
syl321anc |
|
27 |
26
|
necomd |
|
28 |
2 3 15 4
|
2at0mat0 |
|
29 |
9 10 11 12 17 27 28
|
syl33anc |
|
30 |
8
|
eleq1i |
|
31 |
8
|
eqeq1i |
|
32 |
30 31
|
orbi12i |
|
33 |
29 32
|
sylibr |
|