Metamath Proof Explorer


Theorem cdlemg33c

Description: TODO: Fix comment. (Contributed by NM, 30-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
cdlemg31.n N=P˙v˙Q˙RF
cdlemg33.o O=P˙v˙Q˙RG
Assertion cdlemg33c KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 cdlemg31.n N=P˙v˙Q˙RF
9 cdlemg33.o O=P˙v˙Q˙RG
10 simp1 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙W
11 simp21 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rvAv˙W
12 simp22l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rNA
13 simp23l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rFT
14 simp3 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rPQvRFrA¬r˙WP˙r=Q˙r
15 1 2 3 4 5 6 7 8 cdlemg33b0 KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAFTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNz˙P˙v
16 10 11 12 13 14 15 syl131anc KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNz˙P˙v
17 simp11l KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rKHL
18 17 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAKHL
19 hlatl KHLKAtLat
20 18 19 syl KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAKAtLat
21 eqid 0.K=0.K
22 21 4 atn0 KAtLatzAz0.K
23 20 22 sylancom KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAz0.K
24 simp22r KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rO=0.K
25 24 adantr KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAO=0.K
26 23 25 neeqtrrd KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAzO
27 26 biantrud KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAzNzNzO
28 27 anbi1d KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAzNz˙P˙vzNzOz˙P˙v
29 df-3an zNzOz˙P˙vzNzOz˙P˙v
30 28 29 bitr4di KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzAzNz˙P˙vzNzOz˙P˙v
31 30 anbi2d KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNz˙P˙v¬z˙WzNzOz˙P˙v
32 31 rexbidva KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNz˙P˙vzA¬z˙WzNzOz˙P˙v
33 16 32 mpbid KHLWHPA¬P˙WQA¬Q˙WvAv˙WNAO=0.KFTGTPQvRFrA¬r˙WP˙r=Q˙rzA¬z˙WzNzOz˙P˙v