Metamath Proof Explorer


Theorem cdlemk35s-id

Description: Substitution version of cdlemk35 . (Contributed by NM, 26-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk35s-id KHLWHFTFIBGTNTPA¬P˙WRF=RNG/gXT

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simpl1 KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBKHLWH
13 simp21l KHLWHFTFIBGTNTPA¬P˙WRF=RNFT
14 simp23 KHLWHFTFIBGTNTPA¬P˙WRF=RNNT
15 simp3r KHLWHFTFIBGTNTPA¬P˙WRF=RNRF=RN
16 13 14 15 3jca KHLWHFTFIBGTNTPA¬P˙WRF=RNFTNTRF=RN
17 16 adantr KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBFTNTRF=RN
18 simpl3l KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBPA¬P˙W
19 simpr KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBG=IB
20 1 2 3 4 5 6 7 8 9 10 11 cdlemkid KHLWHFTNTRF=RNPA¬P˙WG=IBG/gX=IB
21 12 17 18 19 20 syl112anc KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBG/gX=IB
22 simpl1l KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBKHL
23 simpl1r KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBWH
24 1 6 7 idltrn KHLWHIBT
25 22 23 24 syl2anc KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBIBT
26 21 25 eqeltrd KHLWHFTFIBGTNTPA¬P˙WRF=RNG=IBG/gXT
27 simpl1 KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBKHLWH
28 simpl21 KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBFTFIB
29 simpl22 KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBGT
30 simpr KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBGIB
31 29 30 jca KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBGTGIB
32 simpl23 KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBNT
33 simpl3 KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBPA¬P˙WRF=RN
34 1 2 3 4 5 6 7 8 9 10 11 cdlemk35s KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNG/gXT
35 27 28 31 32 33 34 syl131anc KHLWHFTFIBGTNTPA¬P˙WRF=RNGIBG/gXT
36 26 35 pm2.61dane KHLWHFTFIBGTNTPA¬P˙WRF=RNG/gXT