Description: Substitution version of cdlemk35 . (Contributed by NM, 26-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk5.b | |
|
cdlemk5.l | |
||
cdlemk5.j | |
||
cdlemk5.m | |
||
cdlemk5.a | |
||
cdlemk5.h | |
||
cdlemk5.t | |
||
cdlemk5.r | |
||
cdlemk5.z | |
||
cdlemk5.y | |
||
cdlemk5.x | |
||
Assertion | cdlemk35s-id | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | |
|
2 | cdlemk5.l | |
|
3 | cdlemk5.j | |
|
4 | cdlemk5.m | |
|
5 | cdlemk5.a | |
|
6 | cdlemk5.h | |
|
7 | cdlemk5.t | |
|
8 | cdlemk5.r | |
|
9 | cdlemk5.z | |
|
10 | cdlemk5.y | |
|
11 | cdlemk5.x | |
|
12 | simpl1 | |
|
13 | simp21l | |
|
14 | simp23 | |
|
15 | simp3r | |
|
16 | 13 14 15 | 3jca | |
17 | 16 | adantr | |
18 | simpl3l | |
|
19 | simpr | |
|
20 | 1 2 3 4 5 6 7 8 9 10 11 | cdlemkid | |
21 | 12 17 18 19 20 | syl112anc | |
22 | simpl1l | |
|
23 | simpl1r | |
|
24 | 1 6 7 | idltrn | |
25 | 22 23 24 | syl2anc | |
26 | 21 25 | eqeltrd | |
27 | simpl1 | |
|
28 | simpl21 | |
|
29 | simpl22 | |
|
30 | simpr | |
|
31 | 29 30 | jca | |
32 | simpl23 | |
|
33 | simpl3 | |
|
34 | 1 2 3 4 5 6 7 8 9 10 11 | cdlemk35s | |
35 | 27 28 31 32 33 34 | syl131anc | |
36 | 26 35 | pm2.61dane | |