Metamath Proof Explorer


Theorem cdlemkfid3N

Description: TODO: is this useful or should it be deleted? (Contributed by NM, 29-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
Assertion cdlemkfid3N KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WG/gY=GP

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 simp22 KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WGT
12 10 cdlemk41 GTG/gY=P˙RG˙Z˙RGb-1
13 11 12 syl KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WG/gY=P˙RG˙Z˙RGb-1
14 simp1 KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WKHLWHF=N
15 simp21l KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WFT
16 simp21r KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WFIB
17 simp23l KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WbT
18 simp31 KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WRbRF
19 simp33 KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WPA¬P˙W
20 1 2 3 4 5 6 7 8 9 cdlemkfid2N KHLWHF=NFTFIBbTRbRFPA¬P˙WZ=bP
21 14 15 16 17 18 19 20 syl132anc KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WZ=bP
22 21 oveq1d KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WZ˙RGb-1=bP˙RGb-1
23 22 oveq2d KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WP˙RG˙Z˙RGb-1=P˙RG˙bP˙RGb-1
24 simp1l KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WKHLWH
25 simp23r KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WbIB
26 simp32 KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WRbRG
27 26 necomd KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WRGRb
28 1 2 3 4 5 6 7 8 cdlemkfid1N KHLWHbTbIBGTRGRbPA¬P˙WP˙RG˙bP˙RGb-1=GP
29 24 17 25 11 27 19 28 syl132anc KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WP˙RG˙bP˙RGb-1=GP
30 13 23 29 3eqtrd KHLWHF=NFTFIBGTbTbIBRbRFRbRGPA¬P˙WG/gY=GP