Metamath Proof Explorer


Theorem cdlemki

Description: Part of proof of Lemma K of Crawley p. 118. TODO: Eliminate and put into cdlemksel . (Contributed by NM, 25-Jun-2013)

Ref Expression
Hypotheses cdlemk.b B = Base K
cdlemk.l ˙ = K
cdlemk.j ˙ = join K
cdlemk.a A = Atoms K
cdlemk.h H = LHyp K
cdlemk.t T = LTrn K W
cdlemk.r R = trL K W
cdlemk.m ˙ = meet K
cdlemk.i I = ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1
Assertion cdlemki K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F I T

Proof

Step Hyp Ref Expression
1 cdlemk.b B = Base K
2 cdlemk.l ˙ = K
3 cdlemk.j ˙ = join K
4 cdlemk.a A = Atoms K
5 cdlemk.h H = LHyp K
6 cdlemk.t T = LTrn K W
7 cdlemk.r R = trL K W
8 cdlemk.m ˙ = meet K
9 cdlemk.i I = ι i T | i P = P ˙ R G ˙ N P ˙ R G F -1
10 simp11 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F K HL W H
11 simp22 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P A ¬ P ˙ W
12 simp1 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F K HL W H F T G T
13 simp21 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F N T
14 2 4 5 6 ltrnel K HL W H N T P A ¬ P ˙ W N P A ¬ N P ˙ W
15 10 13 11 14 syl3anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F N P A ¬ N P ˙ W
16 simp11l K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F K HL
17 simp22l K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P A
18 14 simpld K HL W H N T P A ¬ P ˙ W N P A
19 10 13 11 18 syl3anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F N P A
20 2 3 4 hlatlej2 K HL P A N P A N P ˙ P ˙ N P
21 16 17 19 20 syl3anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F N P ˙ P ˙ N P
22 simp23 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F R F = R N
23 22 oveq2d K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ R F = P ˙ R N
24 2 3 4 5 6 7 trljat1 K HL W H N T P A ¬ P ˙ W P ˙ R N = P ˙ N P
25 10 13 11 24 syl3anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ R N = P ˙ N P
26 23 25 eqtr2d K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ N P = P ˙ R F
27 21 26 breqtrd K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F N P ˙ P ˙ R F
28 simp31 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F F I B
29 simp32 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F G I B
30 simp33 K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F R G R F
31 30 necomd K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F R F R G
32 eqid P ˙ R G ˙ N P ˙ R G F -1 = P ˙ R G ˙ N P ˙ R G F -1
33 1 2 3 8 4 5 6 7 32 cdlemh K HL W H F T G T P A ¬ P ˙ W N P A ¬ N P ˙ W N P ˙ P ˙ R F F I B G I B R F R G P ˙ R G ˙ N P ˙ R G F -1 A ¬ P ˙ R G ˙ N P ˙ R G F -1 ˙ W
34 12 11 15 27 28 29 31 33 syl133anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F P ˙ R G ˙ N P ˙ R G F -1 A ¬ P ˙ R G ˙ N P ˙ R G F -1 ˙ W
35 2 4 5 6 9 ltrniotacl K HL W H P A ¬ P ˙ W P ˙ R G ˙ N P ˙ R G F -1 A ¬ P ˙ R G ˙ N P ˙ R G F -1 ˙ W I T
36 10 11 34 35 syl3anc K HL W H F T G T N T P A ¬ P ˙ W R F = R N F I B G I B R G R F I T