| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk.b |
|
| 2 |
|
cdlemk.l |
|
| 3 |
|
cdlemk.j |
|
| 4 |
|
cdlemk.a |
|
| 5 |
|
cdlemk.h |
|
| 6 |
|
cdlemk.t |
|
| 7 |
|
cdlemk.r |
|
| 8 |
|
cdlemk.m |
|
| 9 |
|
cdlemk.i |
|
| 10 |
|
simp11 |
|
| 11 |
|
simp22 |
|
| 12 |
|
simp1 |
|
| 13 |
|
simp21 |
|
| 14 |
2 4 5 6
|
ltrnel |
|
| 15 |
10 13 11 14
|
syl3anc |
|
| 16 |
|
simp11l |
|
| 17 |
|
simp22l |
|
| 18 |
14
|
simpld |
|
| 19 |
10 13 11 18
|
syl3anc |
|
| 20 |
2 3 4
|
hlatlej2 |
|
| 21 |
16 17 19 20
|
syl3anc |
|
| 22 |
|
simp23 |
|
| 23 |
22
|
oveq2d |
|
| 24 |
2 3 4 5 6 7
|
trljat1 |
|
| 25 |
10 13 11 24
|
syl3anc |
|
| 26 |
23 25
|
eqtr2d |
|
| 27 |
21 26
|
breqtrd |
|
| 28 |
|
simp31 |
|
| 29 |
|
simp32 |
|
| 30 |
|
simp33 |
|
| 31 |
30
|
necomd |
|
| 32 |
|
eqid |
|
| 33 |
1 2 3 8 4 5 6 7 32
|
cdlemh |
|
| 34 |
12 11 15 27 28 29 31 33
|
syl133anc |
|
| 35 |
2 4 5 6 9
|
ltrniotacl |
|
| 36 |
10 11 34 35
|
syl3anc |
|