Metamath Proof Explorer


Theorem cdleml5N

Description: Part of proof of Lemma L of Crawley p. 120. TODO: fix comment. (Contributed by NM, 1-Aug-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleml1.b B=BaseK
cdleml1.h H=LHypK
cdleml1.t T=LTrnKW
cdleml1.r R=trLKW
cdleml1.e E=TEndoKW
cdleml3.o 0˙=gTIB
Assertion cdleml5N KHLWHUEVEU0˙sEsU=V

Proof

Step Hyp Ref Expression
1 cdleml1.b B=BaseK
2 cdleml1.h H=LHypK
3 cdleml1.t T=LTrnKW
4 cdleml1.r R=trLKW
5 cdleml1.e E=TEndoKW
6 cdleml3.o 0˙=gTIB
7 simpl1 KHLWHUEVEU0˙V=0˙KHLWH
8 1 2 3 5 6 tendo0cl KHLWH0˙E
9 7 8 syl KHLWHUEVEU0˙V=0˙0˙E
10 simpl2l KHLWHUEVEU0˙V=0˙UE
11 1 2 3 5 6 tendo0mul KHLWHUE0˙U=0˙
12 7 10 11 syl2anc KHLWHUEVEU0˙V=0˙0˙U=0˙
13 simpr KHLWHUEVEU0˙V=0˙V=0˙
14 12 13 eqtr4d KHLWHUEVEU0˙V=0˙0˙U=V
15 coeq1 s=0˙sU=0˙U
16 15 eqeq1d s=0˙sU=V0˙U=V
17 16 rspcev 0˙E0˙U=VsEsU=V
18 9 14 17 syl2anc KHLWHUEVEU0˙V=0˙sEsU=V
19 simpl1 KHLWHUEVEU0˙V0˙KHLWH
20 simpl2 KHLWHUEVEU0˙V0˙UEVE
21 simpl3 KHLWHUEVEU0˙V0˙U0˙
22 simpr KHLWHUEVEU0˙V0˙V0˙
23 1 2 3 4 5 6 cdleml4N KHLWHUEVEU0˙V0˙sEsU=V
24 19 20 21 22 23 syl112anc KHLWHUEVEU0˙V0˙sEsU=V
25 18 24 pm2.61dane KHLWHUEVEU0˙sEsU=V