Metamath Proof Explorer


Theorem cfilresi

Description: A Cauchy filter on a metric subspace extends to a Cauchy filter in the larger space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion cfilresi D∞MetXFCauFilDY×YXfilGenFCauFilD

Proof

Step Hyp Ref Expression
1 xmetres D∞MetXDY×Y∞MetXY
2 iscfil2 DY×Y∞MetXYFCauFilDY×YFFilXYx+yFuyvyuDY×Yv<x
3 2 simplbda DY×Y∞MetXYFCauFilDY×Yx+yFuyvyuDY×Yv<x
4 1 3 sylan D∞MetXFCauFilDY×Yx+yFuyvyuDY×Yv<x
5 cfilfil DY×Y∞MetXYFCauFilDY×YFFilXY
6 1 5 sylan D∞MetXFCauFilDY×YFFilXY
7 filelss FFilXYyFyXY
8 6 7 sylan D∞MetXFCauFilDY×YyFyXY
9 inss2 XYY
10 8 9 sstrdi D∞MetXFCauFilDY×YyFyY
11 10 sselda D∞MetXFCauFilDY×YyFuyuY
12 10 sselda D∞MetXFCauFilDY×YyFvyvY
13 11 12 anim12dan D∞MetXFCauFilDY×YyFuyvyuYvY
14 ovres uYvYuDY×Yv=uDv
15 13 14 syl D∞MetXFCauFilDY×YyFuyvyuDY×Yv=uDv
16 15 breq1d D∞MetXFCauFilDY×YyFuyvyuDY×Yv<xuDv<x
17 16 2ralbidva D∞MetXFCauFilDY×YyFuyvyuDY×Yv<xuyvyuDv<x
18 17 rexbidva D∞MetXFCauFilDY×YyFuyvyuDY×Yv<xyFuyvyuDv<x
19 18 ralbidv D∞MetXFCauFilDY×Yx+yFuyvyuDY×Yv<xx+yFuyvyuDv<x
20 4 19 mpbid D∞MetXFCauFilDY×Yx+yFuyvyuDv<x
21 filfbas FFilXYFfBasXY
22 6 21 syl D∞MetXFCauFilDY×YFfBasXY
23 filsspw FFilXYF𝒫XY
24 6 23 syl D∞MetXFCauFilDY×YF𝒫XY
25 inss1 XYX
26 25 sspwi 𝒫XY𝒫X
27 24 26 sstrdi D∞MetXFCauFilDY×YF𝒫X
28 elfvdm D∞MetXXdom∞Met
29 28 adantr D∞MetXFCauFilDY×YXdom∞Met
30 fbasweak FfBasXYF𝒫XXdom∞MetFfBasX
31 22 27 29 30 syl3anc D∞MetXFCauFilDY×YFfBasX
32 fgcfil D∞MetXFfBasXXfilGenFCauFilDx+yFuyvyuDv<x
33 31 32 syldan D∞MetXFCauFilDY×YXfilGenFCauFilDx+yFuyvyuDv<x
34 20 33 mpbird D∞MetXFCauFilDY×YXfilGenFCauFilD