Metamath Proof Explorer


Theorem cfilucfil3

Description: Given a metric D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the Cauchy filters for the metric. (Contributed by Thierry Arnoux, 15-Dec-2017) (Revised by Thierry Arnoux, 11-Feb-2018)

Ref Expression
Assertion cfilucfil3 XD∞MetXCFilXCCauFilUmetUnifDCCauFilD

Proof

Step Hyp Ref Expression
1 xmetpsmet D∞MetXDPsMetX
2 cfilucfil2 XDPsMetXCCauFilUmetUnifDCfBasXx+yCDy×y0x
3 2 anbi2d XDPsMetXCFilXCCauFilUmetUnifDCFilXCfBasXx+yCDy×y0x
4 filfbas CFilXCfBasX
5 4 pm4.71i CFilXCFilXCfBasX
6 5 anbi1i CFilXx+yCDy×y0xCFilXCfBasXx+yCDy×y0x
7 anass CFilXCfBasXx+yCDy×y0xCFilXCfBasXx+yCDy×y0x
8 6 7 bitr2i CFilXCfBasXx+yCDy×y0xCFilXx+yCDy×y0x
9 3 8 bitrdi XDPsMetXCFilXCCauFilUmetUnifDCFilXx+yCDy×y0x
10 1 9 sylan2 XD∞MetXCFilXCCauFilUmetUnifDCFilXx+yCDy×y0x
11 iscfil D∞MetXCCauFilDCFilXx+yCDy×y0x
12 11 adantl XD∞MetXCCauFilDCFilXx+yCDy×y0x
13 10 12 bitr4d XD∞MetXCFilXCCauFilUmetUnifDCCauFilD